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Introduction 

This report describes LIP, the Livermore Interpolation Package.  Because LIP is a stand-
alone version of the interpolation package in the Livermore Equation of State (LEOS) 
access library, the initials LIP alternatively stand for the “LEOS Interpolation Package”.  
LIP was totally rewritten from the package described in [1].  In particular, the indepen-
dent variables are now referred to as x and y, since the package need not be restricted to 
equation of state data, which uses variables ρ (density) and T (temperature). 

LIP is primarily concerned with the interpolation of two-dimensional data on a 
rectangular mesh.   The interpolation methods provided include piecewise bilinear, 
reduced (12-term) bicubic, and bicubic Hermite (biherm).  There is a monotonicity-
preserving variant of the latter, known as bimond.  For historical reasons, there is also a 
biquadratic interpolator, but this option is not recommended for general use.  In addition 
to direct interpolation of two-dimensional data, LIP includes a facility for inverse 
interpolation (at present, only in the second independent variable).  For completeness, 
however, the package also supports a compatible one-dimensional interpolation 
capability.  Parametric interpolation of points on a two-dimensional curve can be 
accomplished by treating the components as a pair of one-dimensional functions with a 
common independent variable. 

LIP has an object-oriented design, but it is implemented in ANSI Standard C for 
efficiency and compatibility with existing applications.  First, a “LIP interpolation object’ 
is created and initialized with the data to be interpolated.  Then the interpolation 
coefficients for the selected method are computed and added to the object.  The current 
version has options to instead estimate derivative values or merely store data in the 
object.  It is then possible to pass the object to functions that interpolate or invert the 
interpolant at an arbitrary number of points. 

The first section of this report describes the overall design of the package, including both 
forward and inverse interpolation.  Sections 2–5 describe each interpolation method in 
detail.  The software that implements this design is summarized function-by-function in 
Section 6.  For a complete example of package usage, refer to Section 7.  The report con-
cludes with a few brief notes on possible software enhancements.  For guidance on 
adding other functional forms to LIP, refer to Appendix B. 

The reader who is primarily interested in using LIP to solve a problem should skim 
Section 1, then skip to Sections 6.1–4.  Finally, jump ahead to Section 7 and study the 
example.  The remaining sections can be referred to in case more details are desired. 

Changes since the previous version of this document include the new Section 1.4 that 
discusses partial setup options and Section 6.3 that discusses the new function 
lip_setup_interp that implements them.  Section 6.1 and the example in Section 7 
have been modified accordingly. 
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1. Overall Package Design 
This section describes the overall design of LIP.  The organization of the software that 
implements this design is described in Section 6, below. 

1.1. Data 
Throughout this report we assume that data has been given for some function f(x,y) 

on a rectangular mesh x = (x0, x1, ..., xnx–1), y = (y0, y1, ..., yny–1).  Subscripting is from 
zero to be consistent with the C code.  The data values are fij = f(xi,yj).  There are nx×ny 
data values, (nx–1)×(ny–1) mesh rectangles (boxes).  The mesh is arbitrary, except that 
we require: 
 xi–1 < xi, i = 1, …, nx–1; (1.1x) 
 yj–1 < yj, j = 1, …, ny–1. (1.1y) 

In the C code, the data array is one-dimensional, with data[j*nx+i] = f(xi,yj). 

1.2. Compatible univariate interpolation 
The motivation for including univariate interpolation in the original LEOS access 

library was to handle the univariate “cold curves” that are provided by LEOS.  For a 
compatible interpolation method, it is expected that 

 Ft = Fc + Fe + Fi , (1.2) 

where the second letters stand for total (t), cold (c), electronic (e) and ionic (i).  Fc is uni-
variate (a function of density only), and the others are bivariate.  (Here F = E or P.)  The 
univariate interpolant needs to be compatible with its bivariate interpolant of the same 
type (bilinear, bicubic, or biherm), in the sense that if the data for these four functions 
satisfy (1.2), then so will the interpolants (to as close to machine precision as possible). 

The current package contains compatible linear, cubic, and cubic Hermite interpolators.  
Since the EOP data is available only for Ft, there is no univariate quadratic interpolator. 

In the case of univariate data supported by LIP, one of the independent variables is 
omitted, as well as the associated index on the data array.  When ny=0, data[i] = f(xi); 
when nx=0, data[j] = f(yj). 

1.3. Interpolation coefficients 
After an interpolation object has been initialized, the normal first step is to select an 

interpolation method and then compute interpolation coefficients for that method.  The 
resulting object is then ready to be used for the desired application.  The full coefficient 
array contains ncoef×nboxes = ncoef×(nx–1)×(ny–1) numbers, where ncoef increases as 
the smoothness of the interpolation method increases.  See the following table. 
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Method ncoef Function Derivatives Monotonic? 

Bilinear 4 Continuous Jump discontinuity 
across mesh lines 

Yes 

Biquadratic 9 Continuous only at 
data points 

Usually not 
continuous 

No 

Bicubic 12 Continuous along 
mesh lines; may be 
discontinuous 
across mesh lines 

Continuous along 
mesh lines; usually 
discontinuous 
across mesh lines 

No 

Bicubic 
Hermite 

16 Continuous Continuous across 
mesh lines 

May not be 

Bimond 16 Continuous Continuous across 
mesh lines 

Yes 

The univariate piecewise linear interpolant requires two coefficients per mesh cell, 
whereas the univariate cubic interpolants all use ncoef=4. 

1.4. Partial Setup Options 
The primary new capability of LIP version 1.1 is the provision for partial setup (not 

requiring the full coefficient array).  This has two motivations.  First, and foremost, was 
the desire to reduce the memory requirements, possibly at the expense of reduced evalua-
tion speed.  A secondary motivation was the ability to incorporate other interpolation 
methods that do not fit naturally into the standard interpolation coefficient mold. 

Three basic modes are available in version 1.1: 
(1) Full coefficient setup.  This is the standard mode in version 1.0. 
(2) Derivatives-only setup.  Approximate derivative values; compute coefficients as 

needed at evaluation time.  This comes in two flavors: (2a) first partial derivatives 
only, or (2b) first derivatives and twists.  The latter is relevant only for bicubic 
Hermite interpolation (see Section 4, below). 

(3) Data-only setup.  Store data and interpolate directly from the data array. 

The storage requirements for each mode are as follows, with ncoef as in previous table: 
Mode (1) bivariate:  ndata + ncoef × (nx–1) × (ny–1) 
Mode (1) univariate:  ndata + ncoef × max[(nx–1),(ny–1)] 
Mode (2a) bivariate:  ndata + 2×nx×ny 
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Mode (2a) univariate:  ndata + max(nx,ny) 
Mode (2b) bivariate:  ndata + 3×nx×ny 
Mode (3):  ndata 

In the above formulas, 
 ndata = nx×ny + nx + ny, for bivariate data;  
 ndata = 2×max(nx,ny), for univariate data. 

For example, for bicubic Hermite we see that ratio of mode (1) to mode (2a) storage 
requirements is approximately 17/3=5.66... 

At present, not all modes are available for all methods.  The following table summarizes 
the availability in LIP version 1.1.0. 

 

Method dimension Mode (1) Mode(2a) Mode(2b) Mode (3) 

bivariate Yes N/A1 N/A1 Yes Bilinear 

univariate Yes N/A1 N/A1 Yes 

Biquadratic bivariate Yes No No No 

bivariate Yes Yes2 N/A No Bicubic 

univariate Yes Yes N/A Yes 

bivariate Yes Yes Yes No Bicubic 
Hermite 

univariate Yes Yes N/A Yes 

bivariate Yes Yes Yes No Bimond 

univariate Yes Yes N/A Yes 

Notes: 
1. If a Mode (2) setup is attempted for linear interpolation, Mode (3) results. 
2. The two-phase modification (see Secton 3.3) is not done in Mode (2). 
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1.5. Forward interpolation (evaluation) 
Given an array of points (xint, yint) at which interpolation is desired, the first step is to 

call a table lookup function twice, the first to determine the indices of the xint in x, and 
the second to locate the yint in y.  This step is independent of the interpolation method. 

With any functional form, a nontrivial part of the evaluation for a given (x, y) is 
determining box indices i and j such that xi ≤ x < xi+1 and  yj ≤ y < yj+1.  The two 
variables are searched independently.  LIP uses a binary search with guess.  The index 
found at one point is saved and used as a guess at the interval index for the next point.  
(The index for the first point is initialized to zero.) If the defining conditions are already 
satisfied by the saved index, we are done.  If not, the next interval in the direction of the 
input value is examined.  If that test also fails, then a binary search is performed on the 
remaining part of the data. 

For example, let I be the saved x-index.  If xI–1 ≤ x < xI, the test xI ≤ x will fail.  From the 
direction of the failure, the code will then test for xI–1 ≤ x.  This succeeds in this case, 
and the new x-index is i=I–1.  If x < xI–1, however, a binary search will then be per-
formed in [x0, xI–1]. 
  x 

 xI–1  xI xI+1 

In order to provide thread-safety, the function lip_lookup that implements the lookup 
procedure for a single variable saves no state between calls.  It does proceed as indicated, 
but starts anew for each array it is asked to look up.  It returns an array of indices, which 
are then passed on to the appropriate evaluation routine for a most efficient computation. 

The mesh index arrays are partitioned into subsets such that all of the consecutive (xint, 
yint) lie in the same mesh box (ibox, jbox), and the interpolant is evaluated at all of those 
points using a common set of ncoef interpolation coefficients via a call to lip_evalu_ 
box.  This, in turn, calls a specific evaluator, which depends on the method.  The 
variables are transformed as indicated below and the interpolation coefficients are 
obtained.  If the full coefficient array is available, a pointer is set to the appropriate 
location in the coefficient array.  If partial setup has been implemented, the coefficients 
for this mesh box are computed.  Then the appropriate equation is evaluated.  If deriva-
tives are requested, the appropriate derivative formulas are also evaluated, and the values 
are returned to the calling program.  These evaluators are described in more detail below. 

A similar procedure is used in the univariate case, but there is, of course, only a single 
call to lip_lookup.  The analog of lip_evalu_box is called lip_evalu_cell. 

1.6. Variable transformation 
For the standard bivariate forms, the following variable transformations are used to 

simplify formulas and enhance numerical stability: 
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 x = xscale(xint)  = (xint – xi) / Δxi,  Δxi = xi+1 – xi; (1.3x) 

 y = yscale(yint)  = (yint – yj) / Δyj,  Δyj = yj+1 – yj. (1.3y) 

Here (xint,yint) is the point in the original variables at which interpolation is desired, and 
(x,y) is the transformed (scaled) point.  Note that these scale functions have the property 

 xscale(xi)=0,  xscale(xi+1)=1,  yscale(yj)=0,  yscale(yj+1)=1, (1.4) 

so that the rectangle Rij=[xi,xi+1]×[yj,yj+1] is mapped onto the unit square U=[0,1]×[0,1]. 

These scaling transformations are performed in the method-dependent functions called by 
lip_evalu_box. 

1.7. Extrapolation 
If an interpolation point (xint,yint) is outside the data mesh (i.e., xint < x0 or xint > xnx–

1, yint < y0 or yint > yny–1), we are in an “extrapolation” situation.  The current LIP 
evaluators allow two extrapolation options, controlled by argument extr_flag. 
If extr_flag=0 and (xint,yint) is outside the table, then the value at the nearest 
boundary point is returned.  (That is, no extrapolation is performed.)  If derivatives are 
requested, zero is returned to match the constant behavior of the extrapolant. 

On the other hand, if extr_flag=1 and (xint,yint) is outside the table, the value of the 
function and derivative at the nearest edge point are computed. The linear function 
determined by these two values is evaluated at (xint,yint) for the returned value. (This will 
be linear in the out-of-range variable and the order requested in the other.) The edge 
derivatives are returned if requested.  If both values are out of range, then the bilinear 
extrapolant determined by the function and derivative values at the nearest corner is used. 

As an example, suppose  xi <  xint <  xi+1 but yint < y0: 
 
 yint = y1 
 
          Ri0 
 
 yint = y0   (Edge of data region) 
  xi xi+1 
       • (xint,yint) 

In this case, we will have scaled variable values 0<x<1, but y<0. If extr_flag=0, then 
f(xint,y0), the value at (x,0), will be returned. If extr_flag=1, then ∂f(xint,y0)/∂x will 
also be computed (even if not requested) and f(xint,y0) + (yint–y0) ∂f(xint,y0)/∂x will be 
returned. 
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1.8. Inverse interpolation 
Many equation of state applications use ρ and E as the fundamental variables.  In 

order to use the LEOS tables, it is necessary to do an inverse lookup.  Given values (ρ,E) 
= (ρ*,E*), we need to find a temperature T=T* such that 

 E(ρ*,T*) = E*. (1.5) 

The value (ρ*,T*) can then be used as (xint,yint) in the standard evaluation procedure.  
This was the original motivation for including an inversion feature in the LEOS 
interpolation package, and it has been retained in LIP.  At present, inversion is only 
supported in the second independent variable (called T here), and only when the full 
coefficient array is available, mode(1) in Section 1.4. 

The same lookup procedure described above is used to find i such that ρi ≤ ρ* < ρi+1.  Is 
then necessary to examine the values Ej = E(ρ*,Tj), j = 0, 1, ..., ny–1 to find a j such that 
Ej ≤ E* < Ej+1.  A sequential search might require ny evaluations of E to determine j.  To 
reduce code complexity, a simple binary search (without guess) is currently employed.  
Caution: This assumes that E is monotonic in T; i.e., Ej < Ej+1, j = 0, ..., ny–2. 

 T = Tj+1   E(ρ*,Tj+1)>E* 
 T = T*       E* 
          Rij 
 
 T = Tj   E(ρ*,Tj)<E* 
  ρi ρi+1 
     ρ* 

We observe that these evaluations are also made simpler by using the fact that T=Tj 
implies that y=0, and T=Tj+1 implies that y=1. (But not in the biquadratic case, as 
discussed in Section 5.3, below.) 

If the input ρ-value is out of range, the above-mentioned inversion is carried out using the 
appropriate border strip.  If the E-value is out of range, the algorithm returns the associa-
ted boundary T-value, with zero T-derivative. (There is no linear extrapolation option.) 

 
2. Piecewise Bilinear Interpolation 

This section describes the bilinear interpolation method as currently supported by LIP. 

2.1. The bilinear form 
The bilinear functional form on the mesh rectangle Rij is: 

 f(xint,yint) = l(x,y) = a0 + a1x + a2y + a3xy , (2.1) 
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where (x,y) are as in (1.3).  Once the coefficients ak have been determined for a given 
mesh rectangle Rij, it is straightforward to evaluate the bilinear form at any (xint,yint) in 
the box from (2.1). 

2.2. Calculating interpolation coefficients 

The interpolation conditions on mesh rectangle Rij are: 

 fmn = f(xm,yn),  m = i, i+1,  n = j, j+1. (2.2) 

There are four coefficients in (2.1) and four conditions in (2.2).  Using (2.2), we can write 
down the coefficients immediately from (2.1). 

 fij =  f(xi,yj) =  l(0,0)  =  a0; (2.3a) 

 fi+1,j =  f(xi+1,yj) =  l(1,0)  =  a0 + a1; (2.3b) 

 fi,j+1 =  f(xi,yj+1) =  l(0,1)  =  a0 + a2; (2.3c) 

 fi+1,j+1 =  f(xi+1,yj+1) =  l(1,1)  =  a0 + a1 + a2 + a3. (2.3d) 

(2.3a) gives us a0 directly: 

 a0 = fij. (2.4a) 

From (2.3b) and (2.4a) we have 

 a1 = fi+1,j – fij. (2.4b) 

Similarly, (2.3c) and (2.4a) yield 

 a2 = fi,j+1 – fij. (2.4c) 

Finally, (2.3d) gives us 

 a3 = fi+1,j+1 – (a0 + a1 + a2). (2.4d) 

We observe that, by construction, the bilinear form will be continuous across the box 
boundaries.  However, derivatives will have jump discontinuities there. 

The interpolation coefficients are laid out in blocks of four in memory, with the 
coefficients for mesh rectangle Rij starting at location (j*(nx-1)+i)*4 in the 
coefficient array. 

2.3. Direct inversion (bilinear) 
Once the appropriate T-interval has been found, as discussed in Section 1.8, we need 

to solve equation (1.5) for T=T*.  In the bilinear case, this is quite simple.  From (2.1) we 
have 

 E(ρ*,T) = a0 + a1x* + a2y + a3x*y, (2.5) 
where 
 x* = (ρ* – ρi) / (ρi+1 – ρi). 
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Equation (2.5) can be solved directly for y, 

 y = ( E* – (a0 + a1x*) ) / (a2 + a3x*), (2.6) 

and the desired value (obtained by inverting (1.3y) with yint = T) is: 

 T* = (Tj+1 – Tj) y + Tj. (2.7) 

2.4. The univariate analog 
The linear functional form on the mesh interval [xi, xi+1] is: 

 f(xint)  =  l(x)  =  a0 + a1x, (2.8) 

where, unlike in (1.3x), we do not divide by the interval length: 

 x  =  xscale(xint)  =  xint –  xi. (2.9) 

Since a univariate linear function is uniquely determined by its values at two distinct 
points, it is easy to compute the linear interpolation coefficients.  The linear interpolant 
on the mesh interval [xi, xi+1] is thus determined by 

 fk = f(xk),  k =  i, i+1.  (2.10) 

Using (2.8) and (2.9), we can write conditions for the coefficients: 

 fi =  f(xi) =  l(0) = a0; (2.11a) 

 fi+1 =  f(xi+1) =  l(xi+1– xi) = a0 + a1(xi+1– xi). (2.11b) 

 (2.11a) gives us a0 directly: 

 a0 = fi. (2.12a) 

From (2.11b) and (2.12a) we have 

 a1 = (fi+1 – fi) / (xi+1– xi). (2.12b) 

The same formulas are used, with the obvious change of notation, if the independent 
variable is y instead of x. 

 
3. Piecewise Bicubic Interpolation 

This section describes the reduced bicubic interpolation method as currently supported by 
LIP.  This form was inherited from the LEOS interpolation package. 

3.1. The bicubic form 
The reduced (“LEOS standard”) bicubic functional form on the mesh rectangle Rij is: 

 f(xint,yint)  =  c(x,y)  = a0    + a1x     + a2y    + a3xy + 
  a4x2 + a5x2y + a6x3  + a7x3y + (3.1) 
  a8y2 + a9xy2 + a10y3 + a11xy3, 
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where the four highest-order terms (x2y2, x3y2, x2y3, x3y3) have been omitted from the 
general bicubic polynomial to reduce storage space and evaluation time.  Because the 
first four terms in (3.1) are the same as in (2.1), we note that a bilinear function can be 
viewed as a bicubic with its last eight coefficients equal to zero. 

3.2. Calculating interpolation coefficients 
The same four interpolation conditions (2.2) apply to the bicubic form on mesh rec-

tangle Rij, but there are twelve coefficients in (3.1), so we must find eight additional 
equations.  If we had the values of the first partial derivatives of f at the data points, we 
could supplement (2.2) with the eight derivative interpolation conditions: 
 Dxfmn =  ∂f(xm,yn)/∂x, m = i, i+1,  n = j, j+1. (3.2a) 

 Dyfmn =  ∂f(xm,yn)/∂y, m = i, i+1,  n = j, j+1. (3.2b) 

where Dxfmn is the x-derivative of f at the mn data point, and similarly for Dyfmn. To 
approximate the needed derivatives, we bring in information from neighboring points. 

First observe that the four points (x, f(x,yj))),  x = xi–1, xi, xi+1, xi+2 determine a (uni-
variate) cubic in x.  The present LIP interpolator evaluates the derivative of this cubic at 
xi and xi+1 to provide estimates of Dxfij and Dxfi+1,j in (3.2a). 

Requiring the derivatives of bicubic (3.1) to match these two values gives two additional 
equations. Applying this procedure at y= yj+1 gives two more. The other four equations 
are determined similarly, by reversing the roles of x and y and using (3.2b) instead of 
(3.2a). 

Differentiating (3.1), and taking (1.3) into account, gives the partial derivatives required 
for (3.2a) and (3.2b) in Rij: 

∂f(xint,yint)/∂x = ∂c(x,y)/∂x / Δxi =  [ a1       + a3y   + 2a4x + 2a5xy + 
  3a6x2  + 3a7x2y + a9y2 + a11y3] / Δxi. (3.3a) 

∂f(xint,yint)/∂y = ∂c(x,y)/∂y / Δyj = [ a2     + a3x  +    a5x2   +   a7x3 + 
  2a8y + 2a9xy + 3a10y2 + 3a11xy2] / Δyj. (3.3b) 

This leads to a system of 12 linear equations to be solved for the 12 coefficients (a0, a1, 
…, a11) in (3.1).  Note that properties (1.4) greatly simplify the matrix setup.  In fact, the 
matrix is constant, independent of the data.  It is set up for interpolation on the unit 

           Rij 
 
 y = yj 
  xi–1 xi xi+1 xi+2 
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square with the first four rows of the matrix containing the conditions for interpolating 
the data at the four corners, f(x[i],y[i]) = rhs[i], where 

x[ 0] = 0;  y[ 0] = 0; 
x[ 1] = 0;  y[ 1] = 1; 
x[ 2] = 1;  y[ 2] = 0; 
x[ 3] = 1;  y[ 3] = 1. 

Rows 4–7 contain x-derivative interpolation conditions, ∂f(x[i],y[i])/∂x = rhs[i], 
where 

x[ 4] = 0;  y[ 4] = 0; 
x[ 5] = 1;  y[ 5] = 0; 
x[ 6] = 0;  y[ 6] = 1; 
x[ 7] = 1;  y[ 7] = 1. 

Rows 8–11 contain y-derivative interpolation conditions, ∂f(x[i],y[i])/∂y = rhs[i], 
where 

x[ 8] = 0;  y[ 8] = 0; 
x[ 9] = 0;  y[ 9] = 1; 
x[10] = 1;  y[10] = 0; 
x[11] = 1;  y[11] = 1. 

Note that the ∂f/∂x conditions are not in the same order as the others.  This is because it is 
natural to generate x-derivative estimates with y constant, y-derivative estimates with x 
constant. 

The resulting constant matrix is (in C notation): 

 int imat[] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 
                1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, \ 
                1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, \ 
                1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 
                0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 
                0, 1, 0, 0, 2, 0, 3, 0, 0, 0, 0, 0, \ 
                0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, \ 
                0, 1, 0, 1, 2, 2, 3, 3, 0, 1, 0, 1, \ 
                0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 
                0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 3, 0, \ 
                0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, \ 
                0, 0, 1, 1, 0, 1, 0, 1, 2, 2, 3, 3  }; (3.4) 

The twelve coefficients in (3.1) are computed by solving a 12×12 linear system, with the 
above matrix, using Gaussian elimination with partial pivoting.  The procedure is to 
perform an LU factorization of the matrix exactly once.  Then all of the linear systems 
solves reduce to a much more rapid back-substitution. 
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Because the necessary neighboring values needed to determine the univariate cubics are 
not available in the boundary boxes, the setup routine drops to quadratic in the normal 
direction, using only three-point estimates, in mesh rectangle Rij  if  i = 0 or nx–2  or  if  j 
= 0 or ny–2.  The boundary normal derivative is set to zero if this estimate has the 
opposite sign from the data slope. 

Function values are generally continuous across the interior box boundaries, because the 
same function values and similar tangential derivative estimates are used on both sides of 
the boundary between two boxes. Although the derivatives are much smoother than with 
the bilinear form, they are not guaranteed to be continuous across box boundaries. In fact, 
they are generally not continuous in the normal direction. The tangential derivatives are 
nearly continuous, but this is not guaranteed. Because a different set of four data points is 
used to estimate Dxfij in box (i–1,j) and box (i,j), ∂f/∂x may not even be continuous at x = 
xi along the mesh lines. (Similar remarks apply to ∂f/∂y.) 

A version of the bicubic setup routine that uses the average of these two derivative esti-
mates has been tested.  Although the overall quality of the derivatives was better, the 
maximum derivative discontinuity was about the same as with the original method. This 
is presumably due to the fact that we are not using a complete 16-term bicubic here. It 
was decided not to change to these new estimates for such a marginal gain, because it 
would have changed the results for all existing users of the bicubic form.  (Different 
derivative estimates lead to different interpolants.) 

The interpolation coefficients are laid out in blocks of 12 in memory, with the coef-
ficients for mesh rectangle Rij starting at location (j*(nx-1)+i)*12 in the coefficient 
array. 

3.3. Modification for two-phase data 
A modified version of the bicubic coefficient setup is used for two-phase data, 

because the standard bicubic behaves very badly at the edges of the two-phase region, 
where the data suddenly changes from being constant in x (density) to changing very 
rapidly in this variable. The procedure is to drop to bilinear (a special case of bicubic) 
inside or at the boundary of the two-phase region. 

The two-phase region is detected by the test in lip_flat_for_2p (in C notation): 

if ( (i > 0 && \ 
     isflat(data[ j   *nx + i-1], data[ j   *nx + i  ])) || 
\ 
     isflat(data[ j   *nx + i  ], data[ j   *nx + i+1])  || 
\ 
     (i < nx-2 && \ 
     isflat(data[ j   *nx + i+1], data[ j   *nx + i+2])) || 
\ 
     (i > 0 && \ 
     isflat(data[(j+1)*nx + i-1], data[(j+1)*nx + i  ])) || 
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\ 
     isflat(data[(j+1)*nx + i  ], data[(j+1)*nx + i+1])  || 
\ 
     (i < nx-2 && \ 
     isflat(data[(j+1)*nx + i+1], data[(j+1)*nx + i+2])) ) 
{ 
   goto Make_it_bilinear; 
} (3.5) 

Here the logical function isflat is defined by 

 isflat(a, b) = ( |a–b| / max(|a|, |b|)  ≤  FLATHRSH ), (3.6) 

where the “flatness threshold” FLATHRSH is a code parameter that is currently equal to 
1.0e-7.  To reduce the amount of extra testing, (3.5) is applied only in boxes Rij which 
satisfy 

 xi < 1.5 xcrit,   yj  ≤ 1.1 ycrit, 

where the LEOS access library uses xcrit=ρ0, the “normal density” for the material, and 
ycrit=Tc, the “critical temperature”. 

In order to reduce discontinuities between bicubic boxes and neighboring bilinear boxes, 
the derivative estimates at neighboring points are modified to match the linear slopes. 

Note that the above procedure was intended primarily to handle the characteristics of 
two-phase pressure data.  The LEOS access library, however, currently applies this 
modified cubic setup to all of the two-phase functions: P2p, E2p, and S2p. 

3.4. Inverse iteration 
Once the appropriate T-interval has been found, as in Section 1.8, we need to solve 

equation (1.5) for T=T*.  The bicubic case is much more complicated than the bilinear 
case.  In this case we have to solve a cubic polynomial equation for y.  The present code 
uses a hybrid secant/bisection algorithm to solve this.  Matters are simplified a bit by the 
fact that, due to the variable transformation (1.3y), we are solving for a root in the 
interval [0,1]. 

The iteration tolerance NEWTON_TOL is currently set at 1.0e-7.  (This was 1.0e-5 in an 
earlier version, but that was deemed to be insufficient accuracy.)  A typical call requires 
5–7 iterations, but both smaller and larger values have been observed.  (An earlier version 
that used bisection exclusively required 15 iterations per call.) 

3.5. The univariate analog 
The cubic functional form on the mesh interval [xi, xi+1] is: 

 f(xint)  =  c(x)  =  a0 + a1x + a2x2 + a3x3, (3.7) 

where x is as in (2.9). 
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A univariate cubic function is uniquely determined by the values of the function and its 
first derivative at two distinct points.  The cubic interpolant on the mesh interval [xi, xi+1] 
is thus determined by (2.10) and 

 dk = f´(xk),  k =  i, i+1.  (3.8) 

Differentiating (3.7) gives 

 f´(xint)  =  c´(x)  =  a1 + 2a2x + 3a3x2 , (3.9) 

so that we have the four conditions: 

 fi =  f(xi) = c(0) = a0; (3.10a) 

 di =  f´(xi) = c´(0) = a1; (3.10b) 

 fi+1 =  f(xi+1) = c(xi+1–xi) = a0 + a1(xi+1–xi) + a2(xi+1–xi)2 + 

       a3(xi+1–xi)3; (3.10c) 

 di+1 =  f´(xi+1) = c´(xi+1–xi) = a1 + 2a2(xi+1–xi) + 3a3(xi+1–xi)2. (3.10d) 

(3.10a) and (3.10b) give us a0 and a1 directly: 

 a0 = fi; (3.11a) 

 a1 = di. (3.11b) 

Substituting these into (3.10c) and (3.10d) yields a pair of equations to be solved for the 
remaining two coefficients.  From these we obtain: 

 a2 = –( 2Δi + Δi+1 ) ; (3.11c) 

 a3 = ( Δi + Δi+1 ) / (xi+1–xi) , (3.11d) 

where 
 Δk = (dk – m) / (xi+1–xi),  k =  i, i+1 , 

and m is the data slope, m = (fi+1 – fi) / (xi+1–xi) . 

If we use the same derivative estimation scheme to produce di and di+1 as is used for 
Dxfmn in the bicubic setup, we obtain a univariate cubic interpolant that is compatible 
with the bivariate bicubic, in the sense discussed in Section 1.2, above. 

As in the bilinear case, the same formulas are used with the obvious change of notation if 
the independent variable is y instead of x. 

 
4. Bicubic Hermite Interpolation (biherm) 

This section describes the bicubic Hermite interpolation method (abbreviated “biherm”) 
as currently supported by LIP. 

4.1. The bicubic Hermite form 
The bicubic Hermite functional form on the mesh rectangle Rij is:  
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 f(xint,yint)  =  b(x,y)  = 
  a0 h0(x)h0(y)  + a1 h1(x)h0(y)  + a2 h2(x)h0(y)  + a3 h3(x)h0(y)  + 
  a4 h0(x)h1(y)  + a5 h1(x)h1(y)  + a6 h2(x)h1(y)  + a7 h3(x)h1(y)  + 
  a8 h0(x)h2(y)  + a9 h1(x)h2(y)  + a10h2(x)h2(y) + a11h3(x)h2(y)  + 

  a12h0(x)h3(y)  + a13h1(x)h3(y) + a14h2(x)h3(y) + a15h3(x)h3(y) . (4.1) 

For improved numerical stability, we have performed a change of basis on the bicubic 
form.  Note that this is not equivalent to (3.1), because it contains the full 16 terms 
required for a general bicubic function.  Note also that a bilinear function is not a special 
case. 

The (univariate) cubic Hermite basis functions that appear in (4.1) are defined by 
relations: 

 h0(0) = 1, h0(1) = 0, h0´(0) = 0,  h0´(1) = 0;  (4.2a) 
 h1(0) = 0, h1(1) = 1, h1´(0) = 0,  h1´(1) = 0; (4.2b) 
 h2(0) = 0, h2(1) = 0, h2´(0) = 1,  h2´(1) = 0;  (4.2c) 
 h3(0) = 0, h3(1) = 0, h3´(0) = 0,  h3´(1) = 1.  (4.2d) 

These lead to the following formulas for the basis functions: 

 h0(t)  =  1 – 3 t2 + 2 t3  =  h1(1–t)  =  u2 (u + 3 t) ;  (4.3a) 
 h1(t)  =  3 t2 – 2 t3  =  t2 (t + 3 u) ; (4.3b) 
 h2(t)  =  t – 2 t2 +t3  =  –h3(1–t)  = u2 t ;  (4.3c) 
 h3(t)  =  – t2 + t3  = –t2 u , (4.3d) 
where we have set  u = 1 – t . 

We note that equation (4.1) can be rewritten in matrix notation: 

 b(x,y)  =  h(y)T A h(x) , (4.4a) 
where 

 h(t) =  ( h0(t), h1(t), h2(t), h3(t) ) T , (4.4b) 
and 

 A   = ( a0 a1 a2 a3 ) 
  ( a4 a5 a6 a7 ) 
   ( a8 a9 a10 a11 ) 
   ( a12 a13 a14 a15 ) .  (4.4c) 

For evaluation purposes, formula (4.4a) can be associated either from the left or right, for 
two possible nested four-element summations. In one case linear combinations of the x-
basis functions are formed, and the results are used to form linear combinations of the y-
basis functions. The reverse is the case if the other association is chosen. After some ex-
perimentation, different associations have been used in the evaluator, depending on the 
evaluation history, in an attempt to minimize evaluation time. The result is that a biherm 
evaluation is only 20 to 40 percent slower than a standard bicubic one (depending on 
whether derivatives are evaluated). 
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Differentiating (4.4a) with respect to x yields: 

 ∂b(x,y)/∂x  =  h(y)T A h´(x) , (4.5) 

Similarly, 
 ∂b(x,y)/∂y  =  h´(y)T A h(x) , (4.6) 

For bicubic Hermite derivative evaluation, formula (4.5) or (4.6) is used. To provide the 
necessary values, the Hermite basis derivative evaluator returns h´. The relevant formulas 
are obtained by differentiating (4.3), namely: 

 h0´(t)  =  –6 t + 6 t2  =  –h1´(1–t)  =  –6tu ;  (4.7a) 
 h1´(t)  =  6 t – 6 t2  =  6tu ; (4.7b) 
 h3´(t)  =  1 – 4 t + 3 t2  =  h4´(1–t)  = u (u – 2 t) ;  (4.7c) 
 h4´(t)  =  –2 t + 3 t2  = t (t – 2 u) . (4.7d) 

4.2. Calculating interpolation coefficients 
The bicubic function b(x,y) on mesh box Rij, after the transformations (1.3), is 

uniquely determined by the values of the four quantities 
 b,  ∂b/∂x,  ∂b/∂y,  ∂2b/∂x∂y 
at the corners of the box. By construction, if the same values of these four quantities are 
used in adjacent boxes, then these functions are continuous across the box boundaries.  
This requires using continuous derivative estimates for all partial derivatives that appear 
here if actual derivative values are unavailable. 

A significant advantage of using the Hermite basis is that the interpolation coefficients 
can be established directly from the interpolation conditions without the need to solve 
any linear systems. For example, using the relations (4.2) in the functional form (4.1) 
immediately yields the interpolation conditions (2.2) and the following coefficients: 
 a0  =  b(0,0)  =  f(xi,yj) =  fij ; (4.8a) 
 a1  =  b(1,0)  =  f(xi+1,yj) =  fi+1,j ; (4.8b) 
 a4  =  b(0,1)  =  f(xi,yj+1) =  fi,j+1 ; (4.8c) 
 a5  =  b(1,1)  =  f(xi+1,yj+1) =  fi+1,j+1 . (4.8d) 

Note that these four coefficients are in the upper left 4×4 corner of the coefficient matrix 
A in (4.4c). 

Again applying (4.2) to the derivative interpolation conditions (3.2a) shows that the upper 
right corner of A contains the ∂b/∂x–values: 
 a2  =  ∂b(0,0)/∂x  =  Δxi ∂f(xi,yj)/∂x =  Δxi Dxfij ; (4.9a) 
 a3  =  ∂b(1,0)/∂x  =  Δxi ∂f(xi+1,yj)/∂x =  Δxi Dxfi+1,j ; (4.9b) 
 a6  =  ∂b(0,1)/∂x  =  Δxi ∂f(xi,yj+1)/∂x =  Δxi Dxfi,j+1 ; (4.9c) 
 a7  =  ∂b(1,1)/∂x  =  Δxi ∂f(xi+1,yj+1)/∂x =  Δxi Dxfi+1,j+1 , (4.9d) 

where Δxi = xi+1–xi. 
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Similarly, (3.2b) indicates the lower left corner has the ∂b/∂y–values: 
 a8 =  ∂b(0,0)/∂y  =  Δyj ∂f(xi,yj)/∂y =  Δyj Dyfij ; (4.10a) 
 a9 =  ∂b(1,0)/∂y  =  Δyj ∂f(xi+1,yj)/∂y =  Δyj Dyfi+1,j ; (4.10b) 
 a12 =  ∂b(0,1)/∂y  =  Δyj ∂f(xi,yj+1)/∂y =  Δyj Dyfi,j+1 ; (4.10c) 
 a13 =  ∂b(1,1)/∂y  =  Δyj ∂f(xi+1,yj+1)/∂y =  Δyj Dyfi+1,j+1 , (4.10d) 

where Δyj = yj+1–yj. 

As noted above, assuring continuity of first derivatives requires using continuous deriva-
tive estimates for the first partial derivatives in (4.9) and (4.10). The derivative estimates 
used by LIP are the averages of the two four-point estimates discussed in Section 3.2. In 
boundary boxes, a non-centered four-point estimate is used to retain cubic precision. As 
with the standard cubic, this value will be set to zero of it is of the opposite sign from the 
data slope at the boundary. The use of different derivative estimates means that the 
bicubic Hermite interpolant to a given set of data does not satisfy exactly the same 
defining equations as does the standard LIP bicubic, but the result does have continuous 
function and first partial derivatives. 

The mixed partial derivatives (or “twists”) fill out the remainder of the coefficient matrix. 
To see this, differentiate either (4.5) or (4.6) with respect to the other variable to obtain: 

 ∂2b(x,y)/∂x∂y  =  h´(y)T A h´(x) , (4.11) 

and the remaining coefficients: 
 a10 =  ∂2b(0,0)/∂x∂y  =  Δxi Δyj ∂2f(xi,yj)/∂x∂y ; (4.12a) 
 a11 =  ∂2b(1,0)/∂x∂y  =  Δxi Δyj ∂2f(xi+1,yj)/∂x∂y ; (4.12b) 
 a14 =  ∂2b(0,1)/∂x∂y  =  Δxi Δyj ∂2f(xi,yj+1)/∂x∂y ; (4.12c) 
 a15 =  ∂2b(1,1)/∂x∂y  =  Δxi Δyj ∂2f(xi+1,yj+1)/∂x∂y . (4.12d) 

Note that the twists could be set to zero without losing the continuity properties, thus 
reducing the storage requirements to that of the bicubic form, in exchange for a reduction 
in accuracy. We have not chosen this option for LIP. Instead, the average of the three-
point difference formulas in the two coordinate directions applied to the current first 
derivative estimates is used to estimate the twists in (4.12). 

These formulas are used by the biherm setup routine and result in an interpolant that is 
exact when interpolating data from a biquadratic function. While higher-order twist esti-
mates could be used to obtain complete bicubic precision, it has been decided that it is 
not worth the extra effort for such a minimal effect on the interpolant. 

The interpolation coefficients are laid out in blocks of 16 in memory, with the coef-
ficients for mesh rectangle Rij starting at location (j*(nx-1)+i)*16 in the coefficient 
array. 

Note that, since bilinear functions are not a subset of bicubic Hermite functions, there is 
no convenient way to drop to bilinear inside the two-phase region. Consequently, there is 
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no modification of the biherm interpolant for two-phase data comparable to that 
discussed in Section 3.3.  Experience has shown that this interpolant does “ring” near the 
phase transition boundary, but the behavior is confined to only boxes adjacent to this 
boundary and is not nearly as pathological as the standard bicubic. To eliminate this 
“ringing” altogether, use the bimond interpolant, described in the next section. 

4.3. Monotone bicubic Hermite (bimond) 
Monotonicity preservation is possible with the Hermite form of the bicubic interpo-

lant (see [2]–[4]). We have extended the algorithm described in [4] to handle piecewise 
monotonic data (such as a typical pressure table) and included it in LIP as the bimond 
option. 

The name “bimond” is historical. The original version of our univariate monotone piece-
wise cubic interpolation algorithm was implemented in subroutine MONDER (MONotone 
DERivatives), a misnomer for the fact that it determined derivative values that resulted in 
a monotone piecewise cubic Hermite interpolant. We have retained this name for the uni-
variate routine described in Section 4.5, below. Quite naturally, the bivariate version 
became known as BIMOND. The incarnation included in LIP is BIMOND5 (the fifth 
release). 

In brief outline, the BIMOND5 algorithm proceeds as follows: 
Step 1. Initialize two arrays that characterize the monotonicity properties of the data.  

(In each segment where the data have a common monotonicity sense, the 
interpolant will preserve that monotonicity, except perhaps in boxes adjacent to 
a switch in data monotonicity). 

Step 2. Compute initial values for the first partial derivatives ∂b/∂x and ∂b/∂y that 
satisfy a sufficient condition for monotonicity along the mesh lines. This is done 
by first initializing these values as described above for the biherm option, and 
then screening them, possibly reducing derivative magnitudes to satisfy the 
condition. 

Step 3. Construct intervals of acceptable values, containing zero, for the twists 
∂2b/∂x∂y. This step may require further reduction in magnitude of first partial 
derivatives. 

Step 4. Compute values for the twists, as described above for the biherm option, and 
map them into the intervals determined in Step 3. 

The primary complication beyond BIMOND4 [4] occurs in detecting boundaries of mono-
tonicity regions and treating derivative values in adjacent boxes appropriately. 

Once the interpolation coefficients have been determined via the BIMOND5 algorithm, 
the resulting function is evaluated and/or inverted in exactly the same way as an ordinary 
biherm interpolant. Only the coefficient setup is different. 
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4.4. Inverse iteration 
The bicubic Hermite case is handled much like the standard bicubic case, discussed in 

Section 3.4, above. The same iteration procedure is used. The only difference is that the 
cubic being solved is represented in Hermite form, rather than power form. 

4.5. The univariate analogs 
The cubic Hermite functional form on the mesh interval [xi, xi+1] is: 

 f(xint)  =  c(x)  =  a0 h0(x)  + a1 h1(x )+ a2 h2(x) + a3 h3(x), (4.13) 

where x is as in (1.3x), and the hk(x) are as in (4.3).  (We do divide by the interval length 
here, because the hk are defined on the unit interval [0,1].) 

Differentiating (4.13) and using the defining characteristics of the cubic Hermite basis 
functions (4.2) yields the four formulas: 
 a0  =  c(0)  =  f(xi) =  fi ; (4.14a) 
 a1  =  c´(0) =  Δxi f´(xi) =  Δxi di ; (4.14b) 
 a2  =  c(1) =  f(xi+1) =  fi+1 ; (4.14c) 
 a3  =  c´(1) =  Δxi f´(xi+1) =  Δxi di+1 , (4.14d) 
These immediately give us the fact that the cubic Hermite function (4.13) satisfies the 
conditions (2.10) and (3.8) that are necessary and sufficient to uniquely define a cubic 
function on [xi, xi+1]. 

If we use the same derivative estimation scheme to produce di and di+1 as is used for 
Dxfmn in the bicubic Hermite setup, then we obtain a univariate cubic Hermite interpolant 
that is compatible with its bivariate counterpart, in the sense discussed in Section 1.2, 
above. 

In order to provide a univariate interpolant (monder)  that is compatible with bimond, we 
have included an algorithm that uses essentially the procedure of Step 2 of BIMOND5 
(see Section 4.3, above) to compute a piecewise monotonic cubic Hermite interpolant.  
Strictly speaking, monder will be compatible with the bimond interpolant only of no Step 
3 first derivative modifications were required along the lowest isotherm. 

 
5. Piecewise Biquadratic Interpolation 

This section describes the biquadratic interpolation method as currently supported by 
LIP.  This form was inherited from the LEOS interpolation package. 

5.1. The biquadratic form 
The biquadratic form is not recommended as a general bivariate interpolator. It is 

included in LIP only as a means to provide an interpolant for the old EOP data that 
emulates that provided in EOS4 [5].  (This is a concession to allow a future version of the 
LEOS access library to load with LIP instead of using the original LEOS interpolants.)  
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There is no transformation to the normalized variables (x,y) in this case; that is, (x,y) = 
(xint,yint) here.  This is to be as close to the EOS4 interpolant as possible (outside of 
language and computer arithmetic differences). 

The biquadratic functional form on the mesh rectangle Rij is: 

 f(xint,yint)  =  q(x,y)  = a0 + a1x + a2y + a3x2 + a4y2 + a5xy + 
  a6x2y + a7xy2 + a8x2y2. (5.1)  

NOTE:  This form is not fully supported; in particular, there is no univariate equivalent. 

5.2. Calculating interpolation coefficients 
For compatibility with the past, the coefficient calculation algorithm used is a C 

translation of the one in EOS4 [5].  (Further details will not be given here.) 

The interpolation coefficients are laid out in blocks of nine in memory, with the 
coefficients for mesh rectangle Rij starting at location (i*(nx-1)+j)*9 in the 
coefficient array. 

5.3. Inverse iteration 
The biquadratic case is intermediate in complication between bilinear and bicubic.  In 

this case, a quadratic equation has to be solved, once we determine the interval [Ti,Ti+1] 
containing the target T*.  For compatibility with the past, the algorithm used is a C 
translation of the one in EOS4 [5], with some of the special case coding omitted. 

 
6. Software Organization 

LIP is written in ANSI standard C for portability, but an object-oriented design is 
emulated in the code.  The LIP source code is described in this section.  First comes an 
overview illustrating how to use the software.  This is followed by a diagram of the 
source code organization.  Then come detailed descriptions of the source files, grouped 
by function. 

6.1. Overview 
To use LIP to interpolate in a given data table, one must first create a LIP 

interpolation object, populate it with the data, and create a coefficient array for the 
desired interpolation method.  Then one can pass this object to other functions to do 
desired forward or inverse interpolations. 

A summary of this process follows, with illustrative examples.  For a more complete 
example of package usage, refer to Section 7, below. 

Those of you familiar with LIP version 1.0 will know that the process originally required 
several steps, each involving a call to one of the LIP functions: 

(1) Create a LIP interpolation object (macro FMAKE). 
(2) Initialize the object (function lip_init_interp). 
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(3) Add the data to it (function lip_add_data). 
(4) Compute interpolation coefficients of the chosen interpolation type (function lip_ 

calc_coeff). 

A major change in version 1.1 is the introduction of a function lip_setup_interp 
that combines these steps into a single call.  From the user’s point of view, this reduces 
the amount of coding required to get started.  Note that the object must now appear as a 
pointer to a pointer in the lip_setup_interp call. 

New step (1) Create and populate an interpolation object with interpolation coefficients 
of the chosen interpolation type.  (The following example uses pressure as a function 
of density and temperature, but it could be any two-dimensional data set.  It uses 
bicubic Hermite interpolation.) 

#include "LIP_proto.h"  /* LIP function prototypes. */ 
   ... 
LIP_interp *interp ; 
LIP_meth int_type=LIP_HERM ; 
Integer job_flag, retval ; 

job_flag = 3 ;   /* Do full coefficient setup. */ 

retval = lip_setup_interp ( &interp, "rho", ndens, dens, 
                           "T", ntemp, temp, "P", pval,  
                           int_type, job_flag ); 

New step (2) Pass interp on to functions that will do evaluations and/or inversions 
using it.  (The following will interpolate at npts points, with the results in fint.  
Flag extr_flag has been set to select linear extrapolation, as discussed in Section 
1.7.  Only function values have been requested, so dfdx  and dfdy will not be 
referenced.) 

Integer extr_flag=1; 
Logical calcf=TRUE, calcdfdx=FALSE, calcdfdy=FALSE; 
retval = lip_evalu_bivar( interp, int_type, extr_flag, 
                        xint, yint, npts, calcf, fint 
                        calcdfdx, dfdx, calcdfdy, dfdy ); 

 New step(3) When through using this object, free up space that has been allocated for 
it.  Note incompatibility with version 1.0:  While the old four-step process can still 
be used to set up the object, if desired, the lip_free_interp call sequence has 
changed, so the object must now appear as a pointer to a pointer.  (Note that lip_ 
free_interp now de-allocates the object, so an SFREE is not needed.) 

retval = lip_free_interp( &interp ); 

The user who is interested in the reduced storage requirements made available via the 
partial setup options discussed in Section 1.4, above, should refer to Section 6.3, below. 



6. Software Organization 

 - 22 - 

6.2. LIP data types and memory management 
In the above we referred to FMAKE and SFREE, which are memory management 

macros defined in LIP_macros.h.  These were written to emulate the PACT [6] 
memory management facility, which was used in the original version of the LEOS access 
library.   Their call sequences are: 

FMAKE:  Allocate space for a single object of type type. 
 obj = FMAKE( type, string ); 
Here obj is a pointer to the created object and string is an identifier, typically of the 
form “FNAME:obj”, where FNAME is the name of the function issuing this call. 

FMAKE_N:  Allocate space for an array of n objects of type type. 
 obj = FMAKE_N( type, n, string ); 
Here obj is a pointer to the created array and string is an identifier, typically of the 
form “FNAME:obj”, where FNAME is the name of the function issuing this call.  (See 
the sample program for examples.) 

SFREE:  De-allocate space for an object previously allocated by FMAKE or FMAKE_N: 
 SFREE( obj ); 

LIP_macros.h also contains definitions for min, max, and other useful macros. 

All of the LIP source files also include LIP_Ftype.h, which defines Fortran-
compatible data types such as Integer, Real8, Logical used above.  Because 
header files LIP_Ftype.h and LIP_macros.h are included in LIP_proto.h, 
there is no need for the user to explicitly include them. 

6.3. Partial Setup Options 
In order to provide ready access to the full range of setup options now available in 

LIP, we give below the complete user interface for lip_setup_interp.  (This was 
taken from the source code and edited to better fit the page format.)  Refer to Appendix A 
for definitions of the int_type and setup_type values mentioned here. 
 
Integer lip_setup_interp(      LIP_interp **interp, 
                         const char *xname, 
                         const Integer nx, 
                         const Real8 *x, 
                         const char *yname, 
                         const Integer ny, 
                         const Real8 *y, 
                         const char *fname, 
                         const Real8 *f, 
                         const LIP_meth int_type, 
                         const Integer job_flag ) 
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/********************************************************** 
*********************************************************** 
This function initializes and populates a LIP interpolation 
object.  Partial setup options are provided, as well as the 
standard full coefficient array calculation. 
 
Arguments: 
   interp is a pointer to a newly created LIP_interp  
          object.  Because its memory space is allocated  
          within this function, this is a pointer to a  
          pointer.  Thus the ADDRESS of the declared object  
          should appear in the call list.  Example: 
            LIP_interp *my_interp; 
            retval = lip_setup_interp( &my_interp, xname,  
                                       ...); 
            < Code that passes my_interp to an evaluator, 
              inverter, etc. > 
          The allocated space will be freed by a call to  
          lip_free_interp. 
   xname  is the name to be associated with the x-values. 
   nx     is the number of x-values. 
   x      is a pointer to the array of x-values to be  
          added. 
   yname  is the name to be associated with the y-values. 
   ny     is the number of y-values. 
   y      is a pointer to the array of y-values to be  
          added. 
   fname  is the name to be associated with the f-values. 
   f      is a pointer to the array of f-values to be  
          added. 
   int_type is the interpolation type for this object. 
   job_flag indicates the type of setup to be performed. 
          job_flag = 0 : only add the data to interp. 
                   On successful completion, setup_type  
                   will be LSU_DATA. (int_type is not 
                   accessed in this case.) 
          job_flag = 1 : approximate first partial  
                   derivatives, using a method consistent 
                   with int_type.  (Not applicable if  
                   int_type = LIP_LIN.)  On successful  
                   completion, setup_type will be LSU_1DER  
                   or LSU_2DER, depending on whether 1-D  
                   or 2-D data has been provided. 
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          job_flag = 2 : approximate first partial  
                   derivatives and twists, using a method  
                   consistent with int_type.  (Only  
                   applicable for 2-D data with int_type =  
                   LIP_HERM or LIP_MONO.) On successful  
                   completion, setup_type will be LSU_3DER. 
         job_flag = 3 : compute full coefficient array for 
                   int_type interpolation. On successful  
                   completion, setup_type will be LSU_COEF. 
 
  Note: If nx=0, x may be NULL and is not checked or added. 
        If ny=0, y may be NULL and is not checked or added. 
        (These are 1-D data sets.) 
 
Input arguments:  xname, nx, x, yname, ny, y, fname, fval,  
                  int_type, job_flag. 
 
Output arguments: interp. 
 
Return value:  The return value, retval, should be zero. 
  A positive return value is a warning, indicating that  
  retval of the array fields in interp were non-NULL, so  
  were freed before allocation.  (This probably indicates  
  that lip_setup_interp was called with a previously  
  populated interp.) 
  The possible fatal error returns are: 
    retval = -1800 : trouble creating interp. 
    retval = -1801 : illegal value of job_flag. 
    retval = -1802 : illegal or unsupported value of  
                     int_type. 
    retval = -1810 : trouble creating temporary workspace. 
    retval = -1820 : error return from lip_monomod1D. 
    retval = -1821 : error return from PBHpm. 
    This version may also return retval from a called  
    function. 

 

6.4. Source code organization 
The LIP source tree has the following organization.  Directories are in boldface type. 

lip 
 COPYRIGHT 
 INSTALL 



The Livermore Interpolation Package 

- 25 - 

 LIP_Ftype.h 
 Makefile 
 README 
 TESTING 
 aux_source 
 config 
 configure 
 data 
 docs 
 source 
 test 
 utility 

The contents of these files/directories are as follows: 

COPYRIGHT : standard copyright notice. 

INSTALL : instructions for building liblip.a and the test and utility codes. 

LIP_Ftype.h : header file for defining Fortran compatible data types. This is here, 
rather than in source, because it is used by the configure script as a check 
for being in the top level source code directory. 

Makefile : top level make file for the package.  Read INSTALL first. 

README : contains information on the contents of this top-level directory. 

TESTING : instructions for running the test codes and interpreting the results. 

aux_source : contains auxiliary functions and codes used by one or more of the LIP 
test or utility codes. 

config : contains all scripts and files for configuring LIP. 

configure : script for configuring the build process.  Read INSTALL. 

data : contains various data sets used for testing parts of LIP. 

docs : contains LIP documentation files, as well as tools for creating user_docs files 
from LIP source files. 

source : contains the actual source code for LIP.  The contents of this directory will be 
discussed in the following sections. 

test : contains various programs for testing parts of LIP.  The individual test codes are 
in separate subdirectories, each with its own README file. 

utility : contains various LIP utility programs and procedures for building and testing 
them.  The individual utility codes are in separate subdirectories, each with its 
own README file. 
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6.5. LIP data structures and setup functions 
The following files deal with defining, initializing, populating, and interrogating LIP 

interpolation objects.  Refer to lip/docs/user_docs_setup for the user interfaces 
for the setup functions and lip/docs/user_docs_getters for the user interfaces 
for the interrogation functions. 

lip_setup.c : functions to initialize, populate, and free a LIP interpolation object. 

LIP_setup.h : definition of the LIP_interp data type, which sets up a LIP interpo-
lation object, and prototypes for the LIP setup functions. 

lip_interp_setup.c : comprehensive function to initialize and populate a LIP 
interpolation object.  This uses several functions from lip_setup.c.  It is in a 
separate file and its prototype is in LIP_proto.h, because it calls functions 
from several other source files whose prototypes are declared there.  (See Section 
6.3, above, for more details on this function.) 

lip_utility.c : functions to interrogate the contents of a LIP interpolation object. 

LIP_utility.h : prototypes for the functions in lip_utility.c.  (This, of course 
#include's LIP_setup.h.) 

Routines included in file lip_setup.c are: 

lip_init_interp() : initialize an interpolation object. 

lip_valid_setup() : validate the object’s setup-type. 

lip_add_data() : add data to an interpolation object. 

lip_add_1der() : add one derivative (for 1-D data) to an interpolation object. 

lip_add_2der() : add two derivatives (for 2-D data) to an interpolation 
object. 

lip_add_twists() : add twists (for 2-D data) to an interpolation object. 

lip_get_nbasfcns() : get value of nbasfcns (called ncoef in the table 
in Section 1.3) for provided int_type. 

lip_add_coeff() : add full coefficient array (calculated elsewhere) to an 
interpolation object. 

lip_free_interp() : free space for all array fields, then de-allocate the 
object. 

Routines included in file lip_utility.c are: 

The following functions return specified fields from a LIP_interp object: 

lip_get_setup_type() : get the setup_type value from an interpolation 
object.  (See Appendix A for allowable values.) 
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lip_get_xname() : get the xname (name associated with the first 
independent variable) from an interpolation object. 

lip_get_nx() : get the nx-value from an interpolation object. 

lip_get_x() : get the x array from an interpolation object. 

lip_get_yname() : get the yname (name associated with the second inde-
pendent variable) from an interpolation object. 

lip_get_ny() : get the ny-value from an interpolation object. 

lip_get_y() : get the y array from an interpolation object. 

lip_get_fname() : get the fname (name associated with the dependent 
variable) from an interpolation object. 

lip_get_fval() : get the fval (function value) array from an interpolation 
object. 

lip_get_dfdx() : get the dfdx array from an interpolation object. 

lip_get_dfdy() : get the dfdy array from an interpolation object. 

lip_get_twists() : get the twists array from an interpolation object. 

lip_get_coeff() : get the coeff array from an interpolation object. 

lip_get_int_type() : get the int_type value from an interpolation 
object.  (See Appendix A for allowable values.) 

Caution: In the case of an array field, the return value from the associated function is 
a pointer, not a copy of the array. 

Other utility functions: 

lip_print_interp() : print the contents of an interpolation object in a 
readable format. 

6.6. LIP general utility functions 
The following files contain various general utilities for LIP. 

lip_int_util.c : miscellaneous utility functions used by one or more of the LIP 
evaluators or coefficient generators. 

LIP_int_util.h : prototypes for the LIP interpolation utilities contained in file 
lip_int_util.c. 

lip_vers_date.c : functions to return the version number and date for the current 
LIP package.  (This #include's LIP_config.h, which is created by the LIP 
build process.)  Prototypes for these functions are in LIP_int_util.h. 

lip_error.c : defines the LIP error handling functions. 



6. Software Organization 

 - 28 - 

LIP_error.h : prototypes for the functions in lip_error.c.  (This is #included 
in LIP_setup.h and LIP_int_util.h.) 

Routines included in file lip_int_util.c are: 

lip_dcopy() : copy the contents of a Real8 array to another. 

lip_dswap() : swap the contents of two Real8 arrays. 

lip_p2d() : compute the derivative of the quadratic polynomial that 
interpolates a given set of data points.  

lip_p3d() : compute the derivative of the cubic polynomial that interpolates a 
given set of data points.  

lip_cubic_derivs() : compute derivative estimates suitable for piecewise 
cubic interpolation in a given (x,y) data table. 

lip_hbasisf() : evaluate the four Hermite basis functions at a point in [0,1]. 

lip_hbasisd() : evaluate derivatives of the four Hermite basis functions at a 
point in [0,1]. 

lip_fun3c() : three-point difference derivative approximation. 

lip_mach() : emulate SLATEC floating point properties function. 

lip_fsign() : emulate Fortran's SIGN function. 

lip_sign_test() : emulate the PCHIP sign-testing function. 

lip_lookup() : LIP table look-up routine.  (See Section 1.5.) 

Routines included in file lip_vers_date.c are: 

lip_package_version() : return the interpolation package version number. 

lip_package_date() : return the interpolation package date. 

Routines included in file lip_error.c are: 

lip_error_print() : print an error message to the LIP global error message 
string lip_errmsg. 

6.7. LIP coefficient generation 
The following files contain functions for computing interpolation coefficients for a 

LIP interpolation object.  Refer to lip/docs/user_docs_interp for the user 
interfaces for the coefficient generation and interpolation functions.  See Appendix A for 
a list of supported interpolation types. 

LIP_proto.h : prototypes for the LIP coefficient generation and interpolation func-
tions.  (This contains #include's for LIP_setup.h, LIP_utility.h, and 
LIP_int_util.h, so that a user code need only include LIP_proto.h.) 
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lip_coeff.c : functions to calculate interpolation coefficients for a LIP interpolation 
object. 

lip_setup_bimond.c : separate code for "bimond", the LIP_MONO coefficient 
setup (two-dimensional case). 

pbhpm.c : functions that do the actual work for lip_setup_bimond.  The primary 
function is PBHpm (Piecewise Bicubic Hermite interpolation that preserves 
monotonicity). 

LIP_PBH.h : prototypes for the PBH functions in pbhpm.c. 

pchsubs.c : two functions from the old PCHIC package used by the PBH functions. 

LIP_PCH.h : prototypes for the functions in pchsubs.c. 

Routines included in file lip_coeff.c are: 

lip_set_critvals() : set critical values for LIP_CUBM. 

lip_get_critvals() : retrieve critical values for LIP_CUBM.  (Used by 
lip_calc_coeff.) 

lip_calc_coeff() : compute a coefficient array and add it to an existing 
LIP interpolation object.  This is the primary user-
callable function in this file.  (If int_type= LIP_ 
CUBM, it is necessary to call lip_set_critvals 
first.) 

lip_setup_linear() : calculate linear interpolation coefficients. 

lip_setup_cubic() : calculate cubic interpolation coefficients. 

lip_setup_hermit() : calculate cubic Hermite interpolation coefficients. 

lip_setup_monder() : calculate piecewise monotonic cubic Hermite 
interpolation coefficients. 

lip_monomod1D() : used by lip_setup_monder to modify derivatives to 
be suitable for piecewise monotonicity. 

lip_setup_bilinear() : calculate bilinear interpolation coefficients 
(LIP_LIN). 

lip_setup_bicubic() : calculate interpolation coefficients for the 12-term 
bicubic form (LIP_CUB). 

lip_bicubic_matrix() : set up and factor the lip_setup_bicubic 
system matrix. 

lip_bicubic_rhs() :  compute the right-hand-side vector for the 
lip_setup_bicubic linear system. 
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lip_factor() : compute the LU factorization of a matrix.  (Used by 
lip_bicubic_matrix.) 

lip_solve() : solve a linear system, given its LU factorization.  (Used by 
lip_setup_bicubic.) 

lip_setup_bicubic2p() : calculate bicubic interpolation coefficients for 
two-phase data (LIP_CUBM).  (A modification 
of lip_setup_bicubic.) 

lip_flat_for_2p() : function used by lip_setup_bicubic2p to detect 
two-phase data. 

lip_setup_biherm() : calculate bicubic Hermite interpolation coefficients 
(LIP_HERM). 

lip_bicubic_derivs() : calculate derivative estimates suitable for bicubic 
Hermite interpolation (int_type=LIP_HERM 
or LIP_MONO) 

lip_coeff_biherm() : perform the actual coefficient calculations after 
lip_setup_biherm estimates first derivatives.  
(Also used by lip_setup_bimond.) 

lip_twist_est() : compute twist estimates for lip_coeff_biherm. 

lip_coeff_bh_one() : set up the bicubic hermite interpolation coefficients 
for one mesh box.  (Used by lip_coeff_ 
biherm.) 

lip_setup_biquad() : calculate biquadratic interpolation coefficients 
(LIP_QUAD). 

Routines included in file lip_setup_bimond.c are: 

lip_setup_bimond() : calculate monotone bicubic Hermite interpolation 
coefficients (LIP_MONO).  (This is basically an 
interface routine for PBHpm, described below.) 

File pbhpm.c contains the C version of the Fortran function PBHPM, along with all of 
its subsidiary routines.  Routines included are: 

PBHpm : main control routine for BIMOND5 coefficient setup. 

The names for its subsidiary routines were inherited from the Fortran version. 

pbhinit_ : PBHCOM Initialization Routine. 

pbhm1a_ : Step 1 of bicubic Hermite derivative algorithm. 

pbhcz_ : BIMOND Compress Zero string routine. 

pbhm2b_ : Step 2 of bicubic Hermite derivative algorithm. 
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pbhm3a_ : Step 3 of bicubic Hermite derivative algorithm. 

pbhxmb_ : Piecewise Bicubic Hermite X-Monotonicity checker. 

pbhymb_ : Piecewise Bicubic Hermite Y-Monotonicity checker. 

pbhsda_ : BIMOND String Decomposition Routine. 

pbhsg_ : Piecewise Bicubic Hermite SiGn routine. 

pbhtpa_ : BIMOND Transition element Processor. 

pbhts_ : Modified BIMOND Two-sweep Algorithm. 

pbhm4a_ : Step 4 of bicubic Hermite derivative algorithm. 

pbhtw_ : Piecewise Bicubic Hermite TWist routine. 

adc3p_ : Approximate Derivative by Centered 3-Point formula. 

File pchsubs.c contains the C versions of needed functions from the Fortran package 
PCHIP.  Routines included are: 

pchcs8_ : PCHIC8 Monotonicity Switch Derivative Setter. (Used by PBHpm 
to adjust initially estimated derivatives.) 

pchsw8_ : PCHCS8 Switch Excursion Limiter. (Used b^y pchcs8_.) 

6.8. LIP interpolation functions 
The following files contain functions for forward and inverse interpolation using a 

LIP interpolation object.  Refer to lip/docs/user_docs_interp for the user 
interfaces for the coefficient generation and interpolation functions.  See Appendix A for 
a list of supported interpolation types. 

LIP_proto.h : prototypes for the LIP  coefficient generation and interpolation func-
tions.  (This contains #include's for LIP_setup.h, LIP_utility.h, and 
LIP_int_util.h, so that a user code need only include LIP_proto.h.) 

lip_eval1D.c : LIP one-dimensional evaluation functions. 

lip_eval2D.c : LIP two-dimensional evaluation functions. 

lip_inverse.c : functions for inverting two-dimensional interpolants.  (Currently the 
package only supports inversion in the second independent variable.) 

Routines included in file lip_eval1D.c are: 

lip_evalu_univar() : general univariate interpolant evaluator.  (This is the 
user-callable function for 1-D interpolation.) 

lip_evalu_cell() : univariate interpolant evaluator with known cell indices. 

The following three functions are called by lip_evalu_cell: 
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lip_evalu_linear() : used when int_type=LIP_LIN. 

lip_evalu_cubic() : used when int_type=LIP_CUB or LIP_CUBM. 

lip_evalu_hermit() : used when int_type=LIP_HERM or LIP_MONO. 

The following auxiliary function is also in this file: 

lip_cells() : process an index array for lip_evalu_univar. 

Routines included in file lip_eval2D.c are: 

lip_evalu_bivar() : general bivariate interpolant evaluator.  (This is the 
user-callable function for 2-D interpolation.) 

lip_evalu_box() : bivariate interpolant evaluator with known box indices. 

The following four functions are called by lip_evalu_box: 

lip_evalu_bilinear() : used when int_type=LIP_LIN. 

lip_evalu_bicubic() : used when int_type=LIP_CUB or LIP_CUBM. 

lip_evalu_biherm() : used when int_type=LIP_HERM or LIP_MONO. 

lip_evalu_biquad() : used when int_type=LIP_QUAD. 

The following auxiliary function is also in this file: 

lip_boxes() : process a pair of index arrays for lip_evalu_bivar. 

Routines included in file lip_inverse.c are: 

lip_inverse_vals() : general inverter.  (This is the user-callable function 
for inverse interpolation.) 

lip_inv_bilinear() : used when int_type=LIP_LIN. 

lip_inv_biquad() : used when int_type=LIP_QUAD. 

lip_in_intrv() : used by lip_inv_biquad to check whether a point is in 
a specified interval. 

lip_inv_bicubic() : used when int_type=LIP_CUB or LIP_CUBM. 

lip_inv_biherm() : used when int_type=LIP_HERM or LIP_MONO. 
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7. An Example of Package Usage 

This section contains a complete program that illustrates the use of LIP to solve an 
interpolation problem.   It first reads a set of sample data using function readeos (see 
Appendix C).  It then sets up two LIP interpolation objects for this data, one using 
bicubic Hermite interpolation (int_type=LIP_HERM), the other using BIMOND 
(int_type =LIP_MONO).  It first evaluates these interpolants on the input data mesh 
and checks the interpolation accuracy and signs of derivatives at the mesh points.  Then it 
evaluates each at a selection of points in the interior of a mesh box.  For the provided data 
(see Appendix D), mesh box (4,0) is known to give interpolation procedures trouble, so 
several interior points in that box are selected to study the behavior of the two interpo-
lants there.  The test results are given in Appendix E. 

Note: To improve the readability of the example code, optional debug printouts and lines 
that test returned values from LIP functions have been omitted here.  They are included in 
the available source code. 

 
/************************************************** 
*                                                 * 
*    Sample code illustrating the use of LIP      * 
*                                                 * 
***************************************************/ 
 
#include <math.h> 
#include <float.h> 
#include <stdlib.h> 
#include <stdio.h> 
 
/* The following is for the LIP test build procedure. */ 
#ifdef HAVE_CONFIG_H 
#include "LIP_config.h" 
#endif 
 
#include "LIP_macros.h"  /* For various macro definitions. */ 
#include "LIP_proto.h"   /* LIP function prototypes. */ 
  
/* Define maxabs function (min and max defined in LIP_macros.h). */ 
#define maxabs(A,B) ( max( fabs(A), fabs(B) ) ) 
 
/* Tolerance for relative error tests. */ 
#define ERRTOL 1.0e-14 
 
char errmsg[2*MAXLINE];  /* Test global error message string (2 lines). */ 
char lip_errmsg[MAXLINE];  /* LIP global error message string. */ 
 
/* Prototype for data read function. */ 
Integer readeos(const char *filename, 
                Integer *nx, Real8 **x, Integer *ny, Real8 **y, 
                Real8 **f, char *fname); 
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/**********************/ 
/* Start of main code */ 
/**********************/ 
  
int main() 
 
/**********************************************************************
* 
***********************************************************************
* 
* This sample code defines both a BIHERM and BIMOND interpolant to an 
* input data set.  It first evaluates both on the input mesh and 
* verifies that both reproduce the data within machine precision. 
* It then shows that the BIHERM interpolant is not monotonic, but the 
* BIMOND one is. 
* 
* Because EOS (equation of state) data is used for this example, 
* variable names rho and t are used instead of x and y. 
* 
* Change record: 
* (yymmdd means 20yy/mm/dd) 
*  080814  Initial implementation by Fred N. Fritsch, LEOS Development 
*          Team. 
*  081118  Modified to use new lip_setup_interp. (FNF) 
* 
***********************************************************************
* 
***********************************************************************
/ 
 
/* Implementation Note:                                              */ 
/*   Function values computed by BIHERM are denoted by p1val and the */ 
/*   associated derivatives by dp1dr, dp1dt.                         */ 
/*   Function values computed by BIMOND are denoted by p2val and the */ 
/*   associated derivatives by dp2dr, dp2dt.                         */ 
 
{ 
 
 /* Declare data variables. */ 
    char filename[80];  /* Name of input file. */ 
    Integer nrho, nt; 
    Real8   *f, *rho, *t; 
    char fname[8]; 
 
 /* Declare two LIP interpolation objects. */ 
    LIP_interp *interp_herm;  /* For the BIHERM interpolant. */ 
    LIP_interp *interp_mono;  /* For the BIMOND interpolant. */ 
    LIP_meth int_type; 
    Integer job_flag, retfree; 
 
 /* Declare interpolation variables. */ 
    Integer extr_flag=0;  /* Set for constant extrapolation. */ 
    Integer npts; 
    Logical calcf, calcdr, calcdt; 
    Real8   *rhoval, *tval; 
    Real8   *dp1dr, *dp1dt, *p1val; 
    Real8   *dp2dr, *dp2dt, *p2val; 
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 /* Declare other variables. */ 
    Integer i, j, k, retval; 
    Integer nbad1, nbad2; 
    Real8   drho, dt, error, rhosave; 
 
 
/* Begin executable statements */ 
/* =========================== */ 
 
    printf ("\n\t LIP sample code"); 
    printf ("\n\t-----------------\n"); 
  
    /* Get name of input file and read data from it. */ 
 
    printf("\n Type file name.\n"); 
    if ( scanf("%s", filename) != 1) { 
        printf("\n*** Trouble reading filename.\n\n"); 
        printf("     Aborting run.\n"); 
        return -999; 
    } 
    printf("\n");   /* Skip a line before any readeos output. */ 
 
    retval = readeos(filename, &nrho, &rho, &nt, &t, &f, fname); 
    /* Note: on successful return, readeos will have allocated space */ 
    /*       for arrays rho, t, f.                                   */ 
 
    /* Should check value of retval and take appropriate action. */ 
 
    printf("\n readeos returned nrho =%5i, nt =%5i.\n", nrho, nt); 
 
    /* Check that enough data has been read to define coefficients. */ 
    if ( nt<4 || nrho<4 ) { 
        printf("\n ...Bad parameter value(s): nt = %i, nrho = %i\n", 
               nt, nrho); 
        retval = -1; 
        goto Abort; 
    } 
 
/*---------------------------------------------------------*/ 
/* Allocate LIP interpolation objects, store data in them, */ 
/* and compute interpolation coefficients.                 */ 
 
    job_flag = 3;  /* Do full coefficient setup. */ 
 
    /* Note that the xname and yname values were chosen specifically */ 
    /* for the provided data set alplog, which has logged variables. */ 
  
    int_type = LIP_HERM; 
    retval = lip_setup_interp( &interp_herm, "log(rho)", nrho, rho, 
                               "log(T)", nt, t, fname, f, int_type, 
                               job_flag ); 

    /* Should check value of retval and take appropriate action. */ 
 
    int_type = LIP_MONO; 
    retval = lip_setup_interp( &interp_mono, "log(rho)", nrho, rho, 
                               "log(T)", nt, t, fname, f, int_type, 
                               job_flag ); 
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    /* Should check value of retval and take appropriate action. */ 
 
/*------------------------------------------*/ 
/* Set up variables for evaluating function */ 
/* and derivatives on data mesh.            */ 
 
    npts = nrho*nt;  /* Total number of data points. */ 
    rhoval = NULL; 
    rhoval = FMAKE_N( Real8, npts, "SAMPLE:rhoval" ); 
    tval = NULL; 
    tval = FMAKE_N( Real8, npts, "SAMPLE:tval" ); 
    p1val = NULL; 
    p1val = FMAKE_N( Real8, npts, "SAMPLE:p1val" ); 
    dp1dr = NULL; 
    dp1dr = FMAKE_N( Real8, npts, "SAMPLE:dp1dr" ); 
    dp1dt = NULL; 
    dp1dt = FMAKE_N( Real8, npts, "SAMPLE:dp1dt" ); 
    p2val = NULL; 
    p2val = FMAKE_N( Real8, npts, "SAMPLE:p2val" ); 
    dp2dr = NULL; 
    dp2dr = FMAKE_N( Real8, npts, "SAMPLE:dp2dr" ); 
    dp2dt = NULL; 
    dp2dt = FMAKE_N( Real8, npts, "SAMPLE:dp2dt" ); 
    if (  (rhoval==NULL) || (tval==NULL) || 
          (p1val==NULL) || (dp1dr==NULL) || (dp1dt==NULL) || 
          (p2val==NULL) || (dp2dr==NULL) || (dp2dt==NULL) ) { 
        printf ("Trouble allocating storage for test arrays.\n"); 
        goto Done; 
    } 
 
    /* Pick up mesh in a 2-D array for evaluation. */ 
    k = 0; 
    for (i=0; i<nrho; i++) { 
        for (j=0; j<nt; j++) { 
            rhoval[k] = rho[i]; 
            tval[k] = t[j]; 
            k++; 
        } 
    } 
    if (k != npts) { 
        printf ("Trouble setting up test mesh."); 
        printf ("  Expect k = %i; got k = %i\n", npts, k); 
        goto Done; 
    } 
 
/*--------------------------------------------------------------*/ 
/* Evaluate both interpolants and derivatives on the data mesh. */ 
 
    calcf=TRUE;  /* Calculate function values. */ 
    calcdr=TRUE; /* Calculate df/drho values. */ 
    calcdt=TRUE; /* Calculate df/dt values. */ 
 
    retval = lip_evalu_bivar(interp_herm, LIP_HERM, extr_flag, 
                             rhoval, tval, npts, calcf, p1val, 
                             calcdr, dp1dr, calcdt, dp1dt); 
    /* Should check value of retval and take appropriate action. */ 
  
    retval = lip_evalu_bivar(interp_mono, LIP_MONO, extr_flag, 
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                             rhoval, tval, npts, calcf, p2val, 
                             calcdr, dp2dr, calcdt, dp2dt); 
    /* Should check value of retval and take appropriate action. */ 
 
/*---------------------------------------------------------------*/ 
/*  Loop over input mesh and compare computed results with data, */ 
/*  and also compare BIHERM with BIMOND at the data points.      */ 
 
    nbad1 = 0; /* Number of points where BIHERM values fail test. */ 
    nbad2 = 0; /* Number of points where BIMOND does not match. */ 
    k = 0; 
    for (i=0; i<nrho; i++) { 
        for (j=0; j<nt; j++) { 
 
            error = fabs( f[j*nrho+i] - p1val[k] ); 
            if (error != 0.)  error /= maxabs( f[j*nrho+i], p1val[k] ); 
            if ( error > ERRTOL ) nbad1++; 
 
          /* Compare with BIMOND interpolant. */ 
            error = fabs( p2val[k] - p1val[k] ); 
            if (error != 0.)  error /= maxabs( p2val[k], p1val[k] ); 
            if ( error > ERRTOL ) nbad2++; 
            k++; 
 
        }  /* End j-loop. */ 
    }  /* End i-loop. */ 
 
    /* Print summary of test results. */ 
 
    printf ("\n Tolerance for meshpoint accuracy tests = %e.\n", ERRTOL); 
    printf (" %5i values of BIHERM interpolant failed to agree.\n", 
            nbad1); 
    printf (" %5i values of BIMOND interpolant failed to agree.\n", 
             nbad2); 
 
/*----------------------------------------------------------*/ 
/*  Loop over mesh and look for negative derivative values. */ 
/* (A monotone interpolant will have positive derivatives.) */ 
 
    nbad1 = 0; /* Number of negative p1 derivative values. */ 
    nbad2 = 0; /* Number of negative p2 derivative values. */ 
    k = 0; 
    for (i=0; i<nrho; i++) { 
        for (j=0; j<nt; j++) { 
 
            if ( dp1dr[k] < 0. )  nbad1++; 
            if ( dp1dt[k] < 0. )  nbad1++; 
 
            if ( dp2dr[k] < 0. )  nbad2++; 
            if ( dp2dt[k] < 0. )  nbad2++; 
 
            k++; 
 
        }  /* End j-loop. */ 
    }  /* End i-loop. */ 
 
    /* Print summary of derivative test results. */ 
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   printf ("\n For monotonicity, all derivative should be positive.\n"); 
   printf (" %5i values of BIHERM derivative at data points < 0.\n", nbad1); 
   printf (" %5i values of BIMOND derivative at data points < 0.\n", nbad2); 
 
/*----------------------------------------------------------*/ 
/*  The BIHERM interpolant is known to be nonmonotonic on   */ 
/*  mesh box (4,0).  Pick up several interior points which  */ 
/*  illustrate this point and evaluate both interpolants    */ 
/*  at those points.                                        */ 
 
    drho = rho[5] - rho[4]; 
    dt = t[1] - t[0]; 
 
    k = 0; 
    for (i=1; i<4; i++) { 
        rhosave = rho[4] + i*0.25*drho; 
        for (j=1; j<4; j++) { 
            rhoval[k] = rhosave; 
            tval[k] = t[0] + j*0.25*dt; 
            k++; 
        }  /* End j-loop. */ 
    }  /* End i-loop. */ 
 
    npts = k; 
    printf ("\n Evaluating at %i points, the quarter-points of mesh\n", 
            npts); 
    printf ("    box with lower-left corner at (rho,t)=(%.2f,%.2f).\n", 
            rho[4], t[0]); 
 
    /* Note that the calc flags are the same as before. */ 
 
    fflush (stdout); 
    retval = lip_evalu_bivar(interp_herm, LIP_HERM, extr_flag, 
                             rhoval, tval, npts, calcf, p1val, 
                             calcdr, dp1dr, calcdt, dp1dt); 
    /* Should check value of retval and take appropriate action. */ 
  
    fflush (stdout); 
    retval = lip_evalu_bivar(interp_mono, LIP_MONO, extr_flag, 
                             rhoval, tval, npts, calcf, p2val, 
                             calcdr, dp2dr, calcdt, dp2dt); 
    /* Should check value of retval and take appropriate action. */ 
 
    printf ("\n  rho     T        p1       dp1/drho   dp1/dT"); 
    printf ("      p2       dp2/drho   dp2/dT\n"); 
    for (k=0; k<npts; k++) { 
        printf ("%6.4f%8.4f%11.3e%11.3e%10.3e%11.3e%11.3e%10.3e\n", 
                rhoval[k], tval[k], 
                p1val[k], dp1dr[k], dp1dt[k], 
                p2val[k], dp2dr[k], dp2dt[k]); 
    } 
 
/*------------------*/ 
 
Done: 
    printf("\n"); 
    fflush(stdout); 
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/* Free test variables */ 
 
    if ( rhoval != NULL )  SFREE( rhoval ); 
    if (   tval != NULL )  SFREE( tval ); 
    if (  p1val != NULL )  SFREE( p1val ); 
    if (  dp1dr != NULL )  SFREE( dp1dr ); 
    if (  dp1dt != NULL )  SFREE( dp1dt ); 
    if (  p2val != NULL )  SFREE( p2val ); 
    if (  dp2dr != NULL )  SFREE( dp2dr ); 
    if (  dp2dt != NULL )  SFREE( dp2dt ); 
 
/* Free the LIP_interp objects. */ 
 
    /* Free interp_herm. */ 
    retfree = lip_free_interp( &interp_herm ); 
    /* Should check value of retfree and take appropriate action. */ 
 
    /* Free interp_mono. */ 
    retfree = lip_free_interp( &interp_mono ); 
    /* Should check value of retfree and take appropriate action. */ 
 
/* Free space allocated by readeos. */ 
 
Abort:  /* Transfer point for errors during setup. */ 
    SFREE( rho ); 
    SFREE( t ); 
    SFREE( f ); 
 
    return retval; 
 
} 
/********************/ 
/* End of main code */ 
/********************/ 
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8. Possible Enhancements 

8.1. Lookup improvements 
Since EOS tabulation points are logarithmically spaced, it may be possible to further 

speed up the lookup phase by introducing a hash table or other device.  It will be 
necessary to do this without incurring the expense of a logarithm or exponential call 
during evaluation.  (Note: This may be out of place in a general interpolation library.) 

8.2. Newton iteration 
Since derivative of a cubic is relatively inexpensive to evaluate, it might be possible 

to further speed up the bicubic inverse iteration by changing from the secant method to a 
safeguarded Newton iteration.  Since the iteration is to be done on [0,1], it should be easy 
to tell when we are heading out of the interval and take appropriate corrective action. 

8.3. Calculating coefficients during evaluation 
Users of the LEOS access library on massively parallel systems have complained 

about the large memory footprint required by the coefficient arrays.  In case of nfcn 
functions from nmat materials, this is nfcn×nmat×ncoef×nboxes = nfcn×nmat×ncoef× 
(nx–1)×(ny–1) floating point numbers, where ncoef is 12 or 16 for one of the cubic 
interpolants.  This is on top of the nx×ny data values that are retained.  With the new 
job_flag=1 or 2 options on lip_setup_interp, this is reduced to 2×nx×ny 
derivative estimates for the standard bicubic or 3×nx×ny derivative estimates for bicubic 
Hermite, which brings the total storage requirements for the standard cubic down from 
nfcn×nmat×[12×(nx–1)×(ny–1) + nx×ny + nx + ny] to nfcn×nmat×[3×nx×ny + nx + ny], 
a reduction by a factor of approximately 13/3.  For the bicubic Hermite case, where we 
would also need the twist estimates, the multiplier of nfcn×nmat becomes 4×nx×ny, 
reducing storage requirements by a factor of approximately 17/4.  An even more drastic 
speed vs storage tradeoff, which computes coefficients on the fly using only the data 
(job_flag=0), is being considered for a future version of LIP. 
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Appendix A. Values for LIP_interp Fields 

This appendix lists the currently allowable values for certain fields in a 
LIP_interp object.  These are defined in LIP_setup.h. 

The setup_type (setup type) field may have the following values: 

LSU_UNINIT : Uninitialized. 

LSU_INIT : Initialized, but no data stored. 

LSU_DATA : Only data provided. 

LSU_1DER : Data + 1 derivative provided. [1-D data only] 

LSU_2DER : Data + 2 derivatives provided. [2-D data only] 

LSU_3DER : Data + 3 derivatives provided (both first partials plus twists). 
[2-D data only] 

LSU_COEF : Full coefficient setup done. 

These are defined in an enum, and have increasing values moving down the list. 

The int_type (interpolation type) field may have the following values: 

LIP_INVALID : Invalid, but initialized. 

LIP_LIN : (Bi)linear interpolation.  (See Section 2.) 

LIP_CUB : "Standard" (bi)cubic interpolation.  (See Section 3.) 

LIP_CUBM : Modified bicubic interpolation (2-phase data).  (See Section 3.3.) 

LIP_HERM : (Bi)cubic Hermite interpolation.  (See Section 4.) 

LIP_MONO : Monotone (bi)cubic interpolation.  (See Section 4.3.) 

LIP_QUAD : Biquadratic interpolation.  (See Section 5.) 
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Appendix B. Adding a New Interpolation Method 

The purpose of these notes is to discuss what is required for an interpolation method 
to be appropriate for LIP and to describe how to add such a new interpolator. 

1. What kinds of interpolators can be supported? 
The Livermore Interpolation Package (LIP) exists to support data provided on a two-
dimensional rectangular mesh; namely, f(x,y): x = x0, x1, ..., xnx–1;  y = y0, y1, ..., yny–1.  
(Subscripting is from zero to be consistent with the C code.)  Thus any interpolation 
method based on function (and possibly derivative) values on such a mesh is a potential 
candidate for a LIP interpolator.  For full support, the following must be possible: 
 • The interpolation scheme can be factorized into a setup and an evaluation phase.  The 

former computes a fixed number, nbasfcns, of interpolation coefficients for each mesh 
box.  (Although we refer to nbasfcns, meaning number of basis functions, it is not 
required that the interpolant actually be a linear combination of basis functions.)  At 
setup time these are stored in a coefficient array of size (nx–1)*(ny–1)*nbasfcns, 
where the original data mesh is nx by ny. 

 N.B.: If a “coefficient setup on the fly” mode is implemented in LIP, as discussed in 
Section 8.3, it may be that only a partial setup is required.  In this case, the evaluation 
phase must be able to complete the coefficient array for the current mesh box (or 
values of the interpolant) from the available data. 

 • A one-dimensional analog of the method, which is compatible with the 2-D method in 
the sense of Section 1.2, must exist.  Caution: For this to work properly, the “bixxx” 
functional form needs to be symmetric, so that the same univariate form applies to 
interpolation in either variable.  That is, f(x,yconst) = g(x) and f(xconst,y) = g(y), with the 
same univariate functional form g(x) – with different coefficients, of course. 

• It must be possible to provide for inverse interpolation, as discussed in Section 1.8. 
As a concrete example of an acceptable functional form, consider 

f(x,y) =  ( c00 + c10 x + c20 ln(x) + c30 1/x )  
 +  ( c01 + c11 x + c21 ln(x) + c31 1/x ) y 
 +  ( c02 + c12 x + c22 ln(x) + c32 1/x ) ln(y) 
 +  ( c03 + c13 x + c23 ln(x) + c33 1/x ) 1/y , where x>0, y>0. 

This has nbasfcns = 16, the same as LIP_HERM.  Obviously, if we fix x, this reduces to 
g(T)  =  a1 + b1 y + c1 ln(y) + d1 1/y , where 

a1 = c00 + c10 x + c20 ln(x) + c30 1/x , 
b1 = c01 + c11 x + c21 ln(x) + c31 1/x , 
c1 = c02 + c12 x + c22 ln(x) + c32 1/x , 
d1 = c03 + c13 x + c23 ln(x) + c33 1/x . 
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Similarly, if we fix y, this reduces to 
g(x)  =  a2 + b2 x + c2 ln(x) + d2 1/x , where 

a2 = c00 + c01 y + c02 ln(y) + c03 1/y , 
b2 = c10 + c11 y + c12 ln(y) + c13 1/y , 
c2 = c20 + c21 y + c22 ln(y) + c23 1/y , 
d2 = c30 + c31 y + c32 ln(y) + c33 1/y . 

This f has the desired symmetry property.  The univariate analog has nbasfcns = 4. 

2. Adding a new interpolation method to LIP. 
In this section we refer to the new method as “bixxx interpolation”, and its 1-D analog as 
“xxx interpolation”. 

Use existing functions in the files mentioned below as a guide to the assumed calling 
sequences.  It is taken for granted that calling sequence documentation will be updated as 
necessary to reflect the new method.  (A skeleton for the LIP standard prologue format is 
in file lip/aux_source/skeleton.) 

 1. Choose an int_type name LIP_XXX to designate bixxx interpolation and add its 
definition to LIP_setup.h.  Note that this must be different from all previously 
defined interpolation type designators. 

 2. Write a function lip_evalu_bixxx that evaluates a previously set-up bixxx 
interpolant at an array of points.  Add this to file lip_eval2D.c.  Add a suitable 
call to it to leos_evalu_box in this file. 

 3. Write a function lip_evalu_xxx which evaluates a previously set-up xxx inter-
polant at an array of points.  Add this to file lip_eval1D.c.  Add a suitable call 
to it to lip_evalu_cell in this file. 

 4. Write a function lip_setup_bixxx that sets up the full coefficient array for 
bixxx interpolation.  Add this to file lip_coeff.c.  Add a suitable call to it to 
leos_calc_coeff in this file.  (This may not be necessary if the method is only 
implemented for the “coefficient setup on the fly” mode.) 

 5. Also write a function lip_setup_xxx that sets up the coefficient array for (uni-
variate) xxx interpolation.  Add this to file lip_coeff.c as well, and add a suit-
able call to it to leos_calc_coeff in this file.  (Again, may not be necessary.) 

 6. Write a function lip_inv_bixxx which implements inverse bixxx interpolation.  
Add this to file lip_inverse.c.  Add a suitable call to it to lip_inverse_ 
vals in this file. 

 7. Oh, yes!  Don’t forget to change the LIP version number and date in file 
configure.in (refer to the README file in directory lip/config).  (To date, 
no policy has been established for version numbering, but this is a significant enough 
change that at least the first digit after the decimal point should be incremented.) 
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 8. Update the documentation files (in directory lip/docs).  The tools there will be 
helpful here.  Note that it will be necessary to update file prologue_interp to 
reflect the current status.  It may also be necessary to update file names_interp if 
you wish to include the new setup functions in the document.  (Of course, you will 
need to update the prologues of the source files to which you add the new functions 
mentioned above.) 

 9. Add a bixxx option to appropriate test codes in lip/test.  This may require 
adding new input and/or output files and modifying the Run_this scripts to run 
additional cases.  If appropriate, also add a new test specific to this new method. 

Note that items 2–6 will require addition of new prototypes to LIP_proto.h. 



Appendix C. Data Read Function for Example 

 - 46 - 

 
Appendix C. Data Read Function for Example 

Following is the listing of the source code for function readeos, used by the 
example program of Section 7 to read its input data.  The assumed format of the file is 
described in the initial comments.  (We have omitted initial #include's that don't aid 
understanding of the code.) 
 
 
#include "LIP_macros.h"  /* For FMAKE_N. */ 
#include "LIP_Ftype.h"   /* For LIP data type definitions. */ 
 
extern char errmsg[];   /* Link to test global error message string. */ 
 
/*****************************/ 
/* Start of function readeos */ 
/*****************************/ 
Integer readeos(const char *filename, 
                Integer *nx, Real8 **x, Integer *ny, Real8 **y, 
                Real8 **f, char *fname) 
 
/********************************************************************** 
*********************************************************************** 
*  Function to read a function from an LEOS 3-column data file. 
*  (See note below on assumed format of the input file.) 
* 
   (Omitted comments on how readeos differs from read_eos.) 
* 
*  This function allocates array storage internally, after reading nx 
*  and ny.  It is the responsibility of the calling program to call 
*  SFREE for x, y, f when finished using them.  Note that to get the 
*  connection right, these arrays are treated as pointers to pointers 
*  here, and the ADDRESSES of the external arrays need to be sent in 
*  where those arrays appear in the call list. 
* 
* Input variables: 
*     filename  Name of the file to be read. 
* 
* Output variables: 
*     nx        Number of x-values. 
*     x         The x-values. 
*     ny        Number of y-values. 
*     y         The y-values. 
*     f         The f-values. 
*     fname     Will be the name of the dependent variable as read from 
*               the file. 
*  If there was trouble reading the data, the return value will be 
*  negative.  On succesesful return, the data are stored in f in the 
*  order required by LIP; that is, f[j*nx+i] is the value at point 
*  x(i), y(j). 
* 
* Return value:  The return value, retval, should be zero. 
*   The possible fatal error returns are: 
*     retval =   -1 : cannot open input file. 
*     retval =   -2 : problem scanning (fname,ny,nx) line for data set. 
*     retval =   -3 : nx and/or nx <= 0. 



The Livermore Interpolation Package 

- 47 - 

*     retval =  -10 : bad y-value detected (nonrectangular mesh?). 
*     retval = -100 : Trouble allocating memory. 
*     retval = -200 : EOF encountered while reading Data ID Block. 
*     retval = -201 : EOF encountered before end of a data set. 
*  All error indications will result in a message to the global error 
*  message string errmsg, as well. 
* 
* Assumed data format: 
*  The first line of each table contains fname and two integers, in the 
*  order ny and nx.  The fname field is assumed to be at most eight 
*  characters.  For historical reasons, the second dependent variable 
*  (temperature for EOS data) is read before the first (EOS density). 
*  This line is read via sscanf with format "%s %i %i". 
*  The data then follow as y, x, f triples, with all the x-values for 
*  a given y together.  (Again, note the order!) 
* 
*  This version allows a data ID block to be given before the data itself. 
*  The first line of the block must be "*Begin ID Block" and the last line 
*  of the block must be "*End ID Block".  The case of all letters must be 
*  exactly as indicated here.  Any lines of text the creator of the table 
*  wishes to use to identify the data may appear between these two lines. 
* 
*  This version looks for a file named "read_verbose".  If it exists, the 
*  x and y arrays are printed, as well as the first and last values of 
*  the dependent variable.  The data ID block, if present, will also be 
*  printed in this case. 
* 
* Change record: 
* (yymmdd means 20yy/mm/dd) 
*  080806  Initial implementation by Fred N. Fritsch, LEOS Development 
*          Team, from existing read_eos. 
*  080812  Corrected errors in initial conversion and omitted argument 
*          fread. (FNF) 
*  080812  Modified to print error messages to errmsg, not stdout. (FNF) 
* 
*********************************************************************** 
**********************************************************************/ 
 { 
 
/* Declare local variables */ 
 
   FILE *infile; 
   char line[MAXLINE], invar[]="(none)"; 
   Integer i, j, retval; 
   Real8   fin, xin, yin; 
   Logical idblock, verbose; 
 
 
/* Begin executable statements */ 
/* =========================== */ 
 
/* Look for file "read_verbose" and set flag verbose accordingly. */ 
 
   verbose = FALSE; 
   if ( fopen("read_verbose", "r") != NULL )  verbose = TRUE; 
 
/* Open the file to be read. */ 
 



Appendix C. Data Read Function for Example 

 - 48 - 

   infile = fopen(filename, "r"); 
   if (infile == NULL) { 
      sprintf(errmsg, 
              "File %s does not exist or is not readable.\n", 
filename); 
      return (-1); 
   } 
 
/* Initialize. */ 
 
   idblock = FALSE; 
 
   *x = (Real8 *) NULL; 
   *y = (Real8 *) NULL; 
   *f = (Real8 *) NULL; 
 
Continue10: 
      if (fgets(line, MAXLINE, infile) == NULL) { 
         if (idblock) goto Read_error; 
         else         goto Normal_exit; 
      } 
 
   /* Process optional data ID block. */ 
 
      if (strncmp(line, "*Begin ID Block", 15) == 0)  idblock = TRUE; 
      if (idblock) { 
         if (verbose)  printf(" %s", line); 
         if (strncmp(line, "*End ID Block", 13) == 0) { 
            idblock = FALSE; 
            if (verbose)  printf(" \n"); 
         } 
         goto Continue10; 
      } 
 
   /* Read initial data line (fname,ny,nx). */ 
 
      if (sscanf(line, "%s %i %i", fname, ny, nx) == EOF) { 
         sprintf(errmsg, 
                 " ERROR: Illegal initial data line:  %s\n", line); 
         return (-2); 
      } else { 
         printf(" Reading variable %s", fname); 
         printf(":   ny =%5i", *ny); 
         printf(", nx =%5i\n", *nx); 
         fflush(stdout); 
      } 
      if ( (*ny <= 0) || (*nx <= 0) ) { 
         sprintf(errmsg, 
                 "   ERROR: Bad ny=%i or nx=%i\n", *ny, *nx); 
         sprintf(errmsg, "\t***  Aborting EOS read.\n"); 
         return (-3); 
      } 
 
   /* Allocate space for mesh variables. */ 
 
      *x = FMAKE_N(Real8, (*nx), "Readeos:x"); 
      *y = FMAKE_N(Real8, (*ny), "Readeos:y"); 
      if (*x == NULL || *y == NULL) goto Allocate_error; 
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   /* Allocate space for function being read. */ 
 
      *f = FMAKE_N(Real8, (*nx)*(*ny), "Readeos:f"); 
      if (*f == NULL) goto Allocate_error; 
 
   /* Loop over y-values. */ 
 
      for (j = 0; j < *ny; j++) { 
 
     /* Loop over x-values. */ 
 
         for (i = 0; i < *nx; i++) { 
            if (fscanf(infile,"%le", &yin) == EOF) { 
               strcpy(invar, "yin"); 
               goto Read_error; 
            } 
            if (fscanf(infile,"%le", &xin) == EOF) { 
               strcpy(invar, "xin"); 
               goto Read_error; 
            } 
            if (fscanf(infile,"%le", &fin) == EOF) { 
               strcpy(invar, "fin"); 
               goto Read_error; 
            } 
            if (i > 0) { 
               if (yin != (*y)[j]) { 
                  sprintf(errmsg, 
                          " Bad y-value.  Read %e; expected %e\n", 
                          yin, (*y)[j]); 
                  retval = -10; 
                  goto Clean_up; 
               } 
            } 
          /* Don't store y if already stored. */ 
            if (i == 0) { 
               (*y)[j] = yin; 
            } 
          /* Store x. */ 
            (*x)[i] = xin; 
          /* Store f. */ 
            (*f)[j*(*nx)+i] = fin; 
         } 
      } 
 
      printf(" Finished reading %s data.\n", fname); 
      if (verbose) { 
         printf(" x-values:\n    "); 
         for (i = 0;  i < *nx; i++) { 
            printf("%15.7E", (*x)[i]); 
            if (i == *nx-1) printf("\n"); 
            else if (i%5 == 4) printf("\n    "); 
         } 
         printf(" y-values:\n    "); 
         for (j = 0;  j < *ny; j++) { 
            printf("%15.7E", (*y)[j]); 
            if (j == *ny-1) printf("\n"); 
            else if (j%5 == 4) printf("\n    "); 
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         } 
         printf(" First and last %s-values:\n", fname); 
         printf("    %15.7E%15.7E\n", (*f)[0], (*f)[(*ny-1)*(*nx)+*nx-1]); 
      } 
      printf("\n"); 
 
      /* Get rid of dangling end-of-line. */ 
      if (fgets(line, MAXLINE, infile) == NULL) goto Read_error; 
 
/*  Normal exit. */ 
 
Normal_exit: 
   printf(" Done reading data from file %s\n", filename); 
   retval = 0; 
   goto Clean_up; 
 
/*  Error exits. */ 
 
Allocate_error: 
   sprintf(errmsg, 
           " ERROR: Cannot allocate space for one or more arrays.\n"); 
   retval = -100; 
   goto Clean_up; 
 
Read_error: 
   if (idblock) { 
      sprintf(errmsg, " ERROR: EOF while reading data ID block.\n"); 
      sprintf(errmsg, "       Missing '*End ID Block' line?\n"); 
      retval = -200; 
   } else { 
      sprintf(errmsg, 
              " ERROR: EOF before end of data while reading %s for %s\n", 
              invar, fname); 
      retval = -201; 
   } 
 
Clean_up: 
   /* Note: cannot free arrays here, because they are to be accessed */ 
   /*       and used by calling program.                             */ 
 
   /* The following error message should never appear. */ 
   if ( (*x == NULL) || (*y == NULL) || (*f == NULL) ) { 
      printf(" ERROR: One or more NULL array pointers in readeos.\n"); 
   } 
 
   return(retval); 
} 
/***************************/ 
/* End of function readeos */ 
/***************************/ 
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Appendix D. Input File for Example 

Following is the data file alplog read by the example program in Section 7.  These 
data are increasing in both variables, although clearly not strictly increasing, for there are 
sections where the values are independent of ρ (second column).  Note that the name of 
the file stands for “aluminum pressure with all variables logged”.  The “truncated” in the 
initial line of the ID Block means (1) this is but a small segment of a much larger EOS 
table and (2) the values have been truncated to two digits after the decimal point. 

 
*Begin ID Block 
       Truncated section of aluminum EOS table 
This is the sample data set distributed with BIMOND3, converted 
to the format expected by readeos. (FNF 5/24/2001) 
Note that the data columns are log(T), log(rho), log(P). 
*End ID Block 
log(P)   6    10 
     -2.30                 -0.07                -34.54 
     -2.30                  0.33                -34.54 
     -2.30                  0.55                -34.54 
     -2.30                  0.69                -34.54 
     -2.30                  0.84                -34.54 
     -2.30                  0.93                -34.54 
     -2.30                  0.98                 -3.06 
     -2.30                  1.02                 -2.86 
     -2.30                  1.08                 -2.37 
     -2.30                  1.13                 -1.89 
     -1.61                 -0.07                -13.82 
     -1.61                  0.33                -13.82 
     -1.61                  0.55                -13.82 
     -1.61                  0.69                -13.82 
     -1.61                  0.84                -13.82 
     -1.61                  0.93                 -2.68 
     -1.61                  0.98                 -2.28 
     -1.61                  1.02                 -1.92 
     -1.61                  1.08                 -1.60 
     -1.61                  1.13                 -1.30 
     -0.92                 -0.07                -10.10 
     -0.92                  0.33                -10.10 
     -0.92                  0.55                -10.10 
     -0.92                  0.69                -10.10 
     -0.92                  0.84                 -2.52 
     -0.92                  0.93                 -1.88 
     -0.92                  0.98                 -1.63 
     -0.92                  1.02                 -1.39 
     -0.92                  1.08                 -1.17 
     -0.92                  1.13                 -0.95 
     -0.51                 -0.07                 -7.26 
     -0.51                  0.33                 -7.26 
     -0.51                  0.55                 -7.26 
     -0.51                  0.69                 -4.82 
     -0.51                  0.84                 -2.22 
     -0.51                  0.93                 -1.56 
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     -0.51                  0.98                 -1.32 
     -0.51                  1.02                 -1.10 
     -0.51                  1.08                 -0.90 
     -0.51                  1.13                 -0.71 
     -0.22                 -0.07                 -5.66 
     -0.22                  0.33                 -5.66 
     -0.22                  0.55                 -4.88 
     -0.22                  0.69                 -3.34 
     -0.22                  0.84                 -1.98 
     -0.22                  0.93                 -1.41 
     -0.22                  0.98                 -1.15 
     -0.22                  1.02                 -0.92 
     -0.22                  1.08                 -0.72 
     -0.22                  1.13                 -0.54 
      0.                   -0.07                 -4.53 
      0.                    0.33                 -4.13 
      0.                    0.55                 -3.35 
      0.                    0.69                 -2.73 
      0.                    0.84                 -1.78 
      0.                    0.93                 -1.28 
      0.                    0.98                 -1.05 
      0.                    1.02                 -0.81 
      0.                    1.08                 -0.60 
      0.                    1.13                 -0.41 
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Appendix E. Output File for Example 

Following is the result of running the example program in Section 7 with the input 
data given in Appendix D.  Note three pieces of evidence that the BIHERM interpolant p1 
is not monotonic, even though the data are, but the BIMOND interpolant p2 is monotonic.  
First, six negative derivative values were found when p1 was evaluated on the data mesh, 
but none for p2.  Second, in the mesh box (4,0) chosen for special study we find one 
negative value for ∂p1/∂ρ, but none for p2.  Finally, we see that 
 p1(0.8850,–2.1275) – p1(0.8625,–2.1275) = (–29.67) – (–29.60) = –0.07, 
 p1(0.9075,–2.1275) – p1(0.8850,–2.1275) = (–27.52) – (–29.67) = +2.15, 
so p1 clearly is not monotonic in the first variable! 

 
         LIP sample code 

        ----------------- 

 

 Type file name. 

alplog 

 

 Reading variable log(P):   ny =    6, nx =   10 

 Finished reading log(P) data. 

 

 Done reading data from file alplog 

 

 readeos returned nrho =   10, nt =    6. 

 

        Results for log(P) table from file alplog 

 

 Tolerance for meshpoint accuracy tests = 1.000000e-14. 

     0 values of BIHERM interpolant failed to agree. 

     0 values of BIMOND interpolant failed to agree. 

 

 For monotonicity, all derivative should be positive. 

     6 values of BIHERM derivative at data points < 0. 

     0 values of BIMOND derivative at data points < 0. 

 

 Evaluating at 9 points, the quarter-points of mesh 

    box with lower-left corner at (rho,t)=(0.84,-2.30). 
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  rho     T        p1       dp1/drho   dp1/dT      p2       dp2/drho   dp2/dT 

0.8625 -2.1275 -2.960e+01 -3.121e+01 4.602e+01 -2.721e+01  8.768e+01 4.156e+01 

0.8625 -1.9550 -2.220e+01  6.974e+01 3.967e+01 -2.048e+01  1.347e+02 3.574e+01 

0.8625 -1.7825 -1.596e+01  1.265e+02 3.251e+01 -1.516e+01  1.489e+02 2.510e+01 

0.8850 -2.1275 -2.967e+01  3.579e+01 6.190e+01 -2.480e+01  1.171e+02 5.211e+01 

0.8850 -1.9550 -2.012e+01  1.161e+02 4.885e+01 -1.677e+01  1.802e+02 4.043e+01 

0.8850 -1.7825 -1.280e+01  1.499e+02 3.600e+01 -1.106e+01  1.993e+02 2.516e+01 

0.9075 -2.1275 -2.752e+01  1.661e+02 7.083e+01 -2.238e+01  8.829e+01 6.273e+01 

0.9075 -1.9550 -1.693e+01  1.682e+02 5.219e+01 -1.304e+01  1.365e+02 4.519e+01 

0.9075 -1.7825 -9.406e+00  1.478e+02 3.537e+01 -6.930e+00  1.515e+02 2.523e+01 

 


